File size: 16,054 Bytes
c32ee7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import csv
import functools
from typing import Dict, List, Optional, Tuple

import datasets
import pkg_resources
import seqio
import t5
import tensorflow as tf
from t5.data.glue_utils import get_glue_metric, get_super_glue_metric
from t5.evaluation import metrics as mt

import promptsource.templates
from promptsource.seqio_tasks import utils


GET_METRICS = {
    "BLEU": mt.bleu,
    "ROUGE": mt.rouge,
    "Span Squad": mt.span_squad,
    "Squad": mt.squad,
    "Trivia QA": mt.trivia_qa,
    "Accuracy": mt.accuracy,
    "Sequence Accuracy": mt.sequence_accuracy,
    "Pearson Correlation": mt.pearson_corrcoef,
    "Spearman Correlation": mt.spearman_corrcoef,
    "MultiRC": mt.multirc_f1_over_all_answers,
    "AUC": mt.auc,
    "COQA F1": mt.coqa_f1,
    "Edit Distance": mt.edit_distance,
    # "Mean Reciprocal Rank": mt.accuracy,  # NOTE not in T5?
    "Other": mt.accuracy,
    # Missing support for mean_multiclass_f1 etc. which need a num_classes parameter
}

MAX_EXAMPLES_PER_DATASET = 500_000


def strip_whitespace(output_or_target, example=None, is_target=False):
    """Cached tasks from promptsource all have a leading space on the ground-truth targets."""
    return output_or_target.strip()


def maybe_get_class_id_postprocessor(template):
    if template.get_fixed_answer_choices_list():

        def postprocess_fn(output_or_target, example=None, is_target=False):
            output_or_target = strip_whitespace(output_or_target)
            return t5.data.postprocessors.string_label_to_class_id(
                output_or_target, label_classes=template.get_fixed_answer_choices_list()
            )

        return postprocess_fn

    else:
        return strip_whitespace


def get_tf_dataset(split, shuffle_files, seed, dataset_name, subset_name, template, split_mapping):
    # HF datasets does not support file-level shuffling
    del shuffle_files, seed
    dataset = datasets.load_dataset(dataset_name, subset_name)
    dataset = dataset[split_mapping[split]]
    dataset = utils.apply_template(dataset, template)
    return utils.hf_dataset_to_tf_dataset(dataset)


def add_task(dataset_name, subset_name, template_name, task_name=None, split_mapping=None):
    template = all_templates.get_dataset(dataset_name, subset_name)[template_name]
    task_name = task_name or utils.get_task_name(dataset_name, subset_name, template_name)

    if dataset_name == "glue":
        metrics = get_glue_metric(subset_name)
    elif dataset_name == "super_glue":
        if subset_name in ("wsc.fixed", "multirc"):
            # TODO: WSC and MultiRC need special pre/postprocesing
            metrics = [mt.accuracy]
        else:
            metrics = get_super_glue_metric(subset_name)
    else:
        # TODO what if metric is null?
        metrics = [GET_METRICS[m] for m in template.metadata.metrics]

    dataset_splits = utils.get_dataset_splits(dataset_name, subset_name)
    split_mapping = split_mapping or {k: k for k in dataset_splits.keys()}

    dataset_fn = functools.partial(
        get_tf_dataset,
        seed=None,
        dataset_name=dataset_name,
        subset_name=subset_name,
        template=template,
        split_mapping=split_mapping,
    )
    data_source = seqio.FunctionDataSource(
        dataset_fn,
        splits=list(split_mapping.keys()),
        num_input_examples={s: dataset_splits[split_mapping[s]].num_examples for s in split_mapping.keys()},
    )
    output_features = {
        "inputs": seqio.Feature(t5.data.get_default_vocabulary(), add_eos=False, dtype=tf.int32),
        "targets": seqio.Feature(t5.data.get_default_vocabulary(), add_eos=True, dtype=tf.int32),
    }
    preprocessors = [
        seqio.preprocessors.tokenize,
        seqio.preprocessors.append_eos,
        seqio.CacheDatasetPlaceholder(required=False),
    ]

    # Add train and normal eval tasks
    seqio.TaskRegistry.add(
        task_name,
        data_source,
        preprocessors=preprocessors,
        output_features=output_features,
        metric_fns=metrics,
        postprocess_fn=maybe_get_class_id_postprocessor(template),
    )

    # Add rank classification eval task
    if template.answer_choices:
        rank_classification_preprocessor = functools.partial(
            t5.data.preprocessors.rank_classification,
            inputs_fn=lambda ex: tf.fill((len(ex["answer_choices"]),), ex["inputs"]),
            targets_fn=lambda ex: ex["answer_choices"],
            is_correct_fn=lambda ex: tf.equal(ex["answer_choices"], tf.strings.strip(ex["targets"])),
            weight_fn=lambda ex: 1.0,
        )

        fixed_choices = template.get_fixed_answer_choices_list()
        num_classes = len(fixed_choices) if fixed_choices else None
        seqio.TaskRegistry.add(
            task_name + "_score_eval",
            data_source,
            preprocessors=[rank_classification_preprocessor] + preprocessors,
            output_features=output_features,
            metric_fns=[functools.partial(t5.evaluation.metrics.rank_classification, num_classes=num_classes)],
            postprocess_fn=t5.data.postprocessors.rank_classification,
        )


datatset_subset_tuple = Tuple[str, Optional[str]]
d4_train: List[datatset_subset_tuple] = []
d4_eval: List[datatset_subset_tuple] = []
d3_train_gpt: List[datatset_subset_tuple] = []
d3_train_sglue: List[datatset_subset_tuple] = []
bias_fairness_eval: List[datatset_subset_tuple] = []
gsheet: Dict[datatset_subset_tuple, Dict] = {}
experiment_path = pkg_resources.resource_filename(__name__, "experiment_D4.csv")
with open(experiment_path) as exp_file:
    reader = csv.DictReader(exp_file)
    for row in reader:
        if row["skip"]:
            continue
        if row["subset"] == "":
            row["subset"] = None  # to match promptsource.Template object
        dataset_subset = (row["HF_name"], row["subset"])
        if row["do_train"] == "TRUE":
            d4_train.append(dataset_subset)
        if row["do_eval"] == "TRUE":
            d4_eval.append(dataset_subset)
        if row["D3_do_train"] == "TRUE" and "GPT" in row["seed_paper"]:
            d3_train_gpt.append(dataset_subset)
        if row["D3_do_train"] == "TRUE" and row["HF_name"] == "super_glue":
            d3_train_sglue.append(dataset_subset)
        if (
            row["do_eval"] == "TRUE"
            and row["task_by_convention"] == "bias_and_fairness"
            and row["HF_name"] != "winogender"
        ):
            bias_fairness_eval.append(dataset_subset)
        gsheet[dataset_subset] = row
all_datasets = d4_train + d4_eval + d3_train_gpt + d3_train_sglue + bias_fairness_eval

all_templates = promptsource.templates.TemplateCollection()
all_templates.remove("anli")  # Need to special-case ANLI due to weird split conventions

# 3 stages of training/ablation: D4 -> GPT -> SuperGLUE
d4_train_mixture: List[str] = []  # strings are dataset_subset_template
gpt_train_mixture: List[str] = []
sglue_train_mixture: List[str] = []
d4_eval_mixture: List[str] = []
bias_fairness_eval_mixture: List[str] = []
mixture_cap: Dict[str, int] = {}
single_original_task: Dict[Tuple[str, str], str] = {}
all_original_tasks: List[str] = []
for dataset_name, subset_name in all_templates.keys:
    if (dataset_name, subset_name) not in all_datasets:
        all_templates.remove(dataset_name, subset_name)
        continue

    dataset = all_templates.get_dataset(dataset_name, subset_name)
    num_templates = len(dataset.all_template_names)
    train_size = gsheet[(dataset_name, subset_name)]["train_size"]
    if train_size == "":
        train_size = 0
    else:
        train_size = int(train_size)
    if train_size > MAX_EXAMPLES_PER_DATASET:
        cap = MAX_EXAMPLES_PER_DATASET // num_templates
    else:
        cap = train_size
    for template_name in dataset.all_template_names:
        add_task(dataset_name, subset_name, template_name)

        template = dataset[template_name]

        task_name = utils.get_task_name(dataset_name, subset_name, template_name)

        if (dataset_name, subset_name) not in single_original_task and template.metadata.original_task:
            single_original_task[(dataset_name, subset_name)] = task_name

        if template.metadata.original_task:
            all_original_tasks.append(task_name)

        if (dataset_name, subset_name) in d4_train:
            d4_train_mixture.append(task_name)
            mixture_cap[task_name] = cap
        if (dataset_name, subset_name) in d3_train_gpt:
            gpt_train_mixture.append(task_name)
            mixture_cap[task_name] = cap
        if (dataset_name, subset_name) in d3_train_sglue:
            sglue_train_mixture.append(task_name)
            mixture_cap[task_name] = cap
        if (dataset_name, subset_name) in d4_eval:
            if template.metadata.original_task:
                d4_eval_mixture.append(task_name)
            # TODO use template.metadata.answer_choices here for rank eval
        if (dataset_name, subset_name) in bias_fairness_eval:
            bias_fairness_eval_mixture.append(task_name)

# Special case for ANLI, which has weirdly-named splits and rounds that should be subsets
dataset_name, subset_name = ("anli", None)
dataset = all_templates.get_dataset(dataset_name, subset_name)
for anli_round in ("r1", "r2", "r3"):
    for template_name in all_templates.get_dataset(dataset_name, subset_name).all_template_names:
        task_name = utils.get_task_name(dataset_name, subset_name, template_name) + f"_{anli_round}"
        split_mapping = {
            "train": f"train_{anli_round}",
            "validation": f"dev_{anli_round}",
            "test": f"test_{anli_round}",
        }
        add_task(dataset_name, subset_name, template_name, task_name, split_mapping)

        template = dataset[template_name]
        if template.metadata.original_task:
            d4_eval_mixture.append(task_name)  # TODO or add to ANLI special mixture
        # TODO use template.metadata.answer_choices here for rank eval


TASK_BLACKLIST = [
    # Tasks which often tokenize to > 1024 tokens currently
    "hotpot_qa_distractor_Generate_Explanations",
    "hotpot_qa_fullwiki_Generate_Explanations",
    "hotpot_qa_distractor_Generate_Answer_and_Explanations",
    "hotpot_qa_fullwiki_Generate_Answer_and_Explanations",
    "hotpot_qa_fullwiki_Generate_Answer",
    "hotpot_qa_distractor_Generate_Answer",
    "hotpot_qa_distractor_Generate_Title_2",
    "hotpot_qa_fullwiki_Generate_Title_2",
    "hotpot_qa_fullwiki_Generate_Title_1",
    "hotpot_qa_distractor_Generate_Title_1",
    "hotpot_qa_distractor_Generate_Question",
    "hotpot_qa_fullwiki_Generate_Question",
    "tab_fact_tab_fact_tab_fact_3",
    "tab_fact_tab_fact_tab_fact_2",
    "tab_fact_tab_fact_tab_fact_1",
    "tab_fact_tab_fact_tab_fact_7",
    "tab_fact_tab_fact_tab_fact_4",
    "tab_fact_tab_fact_tab_fact_5",
    "tab_fact_tab_fact_tab_fact_6",
    "wiki_hop_masked_Choose_Best_Object_Candidate",
    "wiki_hop_masked_Indirect_Question_about_Birthplace_Citizenship_Place_of_Death",
    "narrativeqa_Template_05",
    "ecthr_cases_alleged_violation_prediction_silver_rationales",
    # Tasks with broken cached files
    "gigaword_summarize_",
]

# Tasks that failed caching (won't try to fix them for now) - remove when we are done
D4_TRAIN_SCORE_EVAL_TASK_BLACKLIST = [
    "amazon_polarity_Is_this_product_review_positive_score_eval",
    "amazon_polarity_Is_this_review_negative_score_eval",
    "amazon_polarity_Is_this_review_score_eval",
    "amazon_polarity_User_recommend_this_product_score_eval",
    "amazon_polarity_convey_negative_or_positive_sentiment_score_eval",
    "amazon_polarity_flattering_or_not_score_eval",
    "amazon_polarity_negative_or_positive_tone_score_eval",
    "amazon_polarity_user_satisfied_score_eval",
    "amazon_polarity_would_you_buy_score_eval",
    "dbpedia_14_given_a_choice_of_categories__score_eval",
    "dbpedia_14_given_list_what_category_does_the_paragraph_belong_to_score_eval",
    "dbpedia_14_pick_one_category_for_the_following_text_score_eval",
    "wiki_hop_original_choose_best_object_affirmative_1_score_eval",
    "wiki_hop_original_choose_best_object_affirmative_2_score_eval",
    "wiki_hop_original_choose_best_object_affirmative_3_score_eval",
    "wiki_hop_original_choose_best_object_interrogative_1_score_eval",
    "wiki_hop_original_choose_best_object_interrogative_2_score_eval",
]

seqio.MixtureRegistry.add(
    "d4_train",
    [task for task in d4_train_mixture if task not in TASK_BLACKLIST],
    default_rate=lambda t: mixture_cap[t.name],
)

seqio.MixtureRegistry.add(
    "gpt_train",
    [task for task in gpt_train_mixture if task not in TASK_BLACKLIST],
    default_rate=lambda t: mixture_cap[t.name],
)

seqio.MixtureRegistry.add(
    "sglue_train",
    [task for task in sglue_train_mixture if task not in TASK_BLACKLIST],
    default_rate=lambda t: mixture_cap[t.name],
)

seqio.MixtureRegistry.add(
    "d4_gpt_train",
    [task for task in d4_train_mixture + gpt_train_mixture if task not in TASK_BLACKLIST],
    default_rate=lambda t: mixture_cap[t.name],
)

seqio.MixtureRegistry.add(
    "d4_gpt_sglue_train",
    [task for task in d4_train_mixture + gpt_train_mixture + sglue_train_mixture if task not in TASK_BLACKLIST],
    default_rate=lambda t: mixture_cap[t.name],
)

seqio.MixtureRegistry.add(
    "d4_eval",
    [task for task in d4_eval_mixture if task not in TASK_BLACKLIST],
    default_rate=functools.partial(seqio.mixing_rate_num_examples, maximum=500_000),
)  # eval mixture does not need to be capped


seqio.MixtureRegistry.add(
    "d4_score_eval",
    [
        task
        for task in seqio.TaskRegistry.names()
        if task.endswith("_score_eval")
        and task.split("_score_eval")[0] in d4_eval_mixture
        and task.split("_score_eval")[0] not in TASK_BLACKLIST
    ],
    default_rate=functools.partial(seqio.mixing_rate_num_examples, maximum=500_000),
)

# Train tasks we don't care about evaluating on
D4_TRAIN_SKIP_EVAL = [
    "paws_labeled_final",
    "adversarial_qa_dbidaf",
    "adversarial_qa_dbert",
    "duorc_ParaphraseRC",
    "dream",
    "amazon_polarity",
    "app_reviews",
    "imdb",
    "wiki_bio",
    "gigaword",
    "multi_news",
    "samsum",
    "dbpedia_14",
    "trec",
]

seqio.MixtureRegistry.add(
    "d4_train_eval",
    [
        task
        for task in d4_train_mixture
        if task not in TASK_BLACKLIST
        and not any([skip in task for skip in D4_TRAIN_SKIP_EVAL])
        and task in all_original_tasks
    ],
    default_rate=lambda t: mixture_cap[t.name],
)

seqio.MixtureRegistry.add(
    "d4_train_score_eval",
    [
        task
        for task in seqio.TaskRegistry.names()
        if task.endswith("_score_eval")
        and task.split("_score_eval")[0] in d4_train_mixture
        and task.split("_score_eval")[0] not in TASK_BLACKLIST
        and task not in D4_TRAIN_SCORE_EVAL_TASK_BLACKLIST
        and not any([skip in task for skip in D4_TRAIN_SKIP_EVAL])
        and task.split("_score_eval")[0] in all_original_tasks
    ],
    default_rate=functools.partial(seqio.mixing_rate_num_examples, maximum=500_000),
)

seqio.MixtureRegistry.add(
    "d4_train_one_og_prompt",
    [task for task in single_original_task.values() if task in d4_train_mixture and task not in TASK_BLACKLIST],
    default_rate=lambda t: mixture_cap[t.name],
)

seqio.MixtureRegistry.add(
    "d4_train_all_og_prompts",
    [task for task in all_original_tasks if task in d4_train_mixture and task not in TASK_BLACKLIST],
    default_rate=lambda t: mixture_cap[t.name],
)

seqio.MixtureRegistry.add(
    "bias_fairness_eval",
    bias_fairness_eval_mixture,
    default_rate=functools.partial(seqio.mixing_rate_num_examples, maximum=500_000),
)

seqio.MixtureRegistry.add(
    "bias_fairness_eval_score_eval",
    [
        task
        for task in seqio.TaskRegistry.names()
        if task.endswith("_score_eval") and task.split("_score_eval")[0] in bias_fairness_eval_mixture
    ],
    default_rate=functools.partial(seqio.mixing_rate_num_examples, maximum=500_000),
)