Spaces:
Build error
Build error
import csv | |
from pprint import pprint | |
from typing import Dict, List | |
import pkg_resources | |
from t5.data.glue_utils import get_glue_metric, get_super_glue_metric | |
from t5.evaluation.metrics import accuracy, mean_multiclass_f1, rouge | |
SAFE_EXCLUDE_CRETERIA = [ | |
"template_bug", | |
"negated_answers", | |
"counting", | |
"answer_span_indices", | |
"non_natural_language", | |
"generative_non_true_implausible", | |
] | |
AGGRESSIVE_EXCLUDE_CRETERIA = [ | |
"generative_non_true_task", | |
"nontrivial_choices_hidden", | |
"awkward_phrasing", | |
"ungrammatical", | |
] + SAFE_EXCLUDE_CRETERIA | |
NON_GLUE_METRICS = { # for those with do_eval = True | |
"anli": [accuracy], | |
"hans": [accuracy], | |
"circa_goldstandard1_judgement": [mean_multiclass_f1(num_classes=8), accuracy], | |
"circa_goldstandard2_judgement": [mean_multiclass_f1(num_classes=5), accuracy], | |
"mc_taco": [accuracy], | |
"nq_open": [accuracy], | |
"qa_srl": [accuracy], | |
"openbookqa": [accuracy], | |
"race": [accuracy], | |
"social_i_qa": [accuracy], | |
"emo": [mean_multiclass_f1(num_classes=4)], | |
"xsum": [rouge], | |
} | |
def exclude_bad_prompts(prompt: Dict) -> bool: | |
for criterion in SAFE_EXCLUDE_CRETERIA: # or AGGRESSIVE_EXCLUDE_CRETERIA | |
if prompt.get(criterion): | |
return False | |
return True | |
def load_annotated_prompts() -> List[Dict]: | |
annotated_csv_path = pkg_resources.resource_filename(__name__, "experiment_D3.csv") | |
with open(annotated_csv_path) as in_file: | |
reader = csv.DictReader(in_file) | |
all_tasks = [row for row in reader] | |
clean_tasks = list(filter(exclude_bad_prompts, all_tasks)) | |
# Assign metrics | |
non_glue_eval_sets = list(NON_GLUE_METRICS.keys()) | |
for task in clean_tasks: | |
if not task["do_eval"]: | |
continue | |
full_name = task["dataset_subset_template"] | |
if full_name.startswith("glue"): | |
subset = full_name.split("_")[1] | |
task["metrics"] = get_glue_metric(subset) | |
elif full_name.startswith("super_glue"): | |
subset = full_name.split("_")[2] | |
if subset in ("wsc.fixed", "multirc"): | |
# TODO: WSC and MultiRC need special pre/postprocesing | |
task["metrics"] = [accuracy] | |
continue | |
task["metrics"] = get_super_glue_metric(subset) | |
for dataset_name in non_glue_eval_sets: | |
if full_name.startswith(dataset_name): | |
task["metrics"] = NON_GLUE_METRICS[dataset_name] | |
# Skip rank_classification for now until we actually support it | |
# if task["nontrivial_choices_hidden"]: | |
# # Trick of plugging in answer options and rank LM probabilites as predictions. | |
# # Required for all prompts with non_trivial_choices_hidden, | |
# # but could be used for other tasks as well where answer choices are given. | |
# if "metrics" not in task: | |
# task["metrics"] = [rank_classification] | |
# elif rank_classification not in task["metrics"]: | |
# task["metrics"].append(rank_classification) | |
# should be already handled by NON_GLUE_METRICS | |
# if task['generative_true_task'] or task['generative_non_true_task']: | |
# task['metrics'] = rouge | |
return clean_tasks | |
def preview() -> None: | |
clean_tasks = load_annotated_prompts() | |
train_tasks = [t for t in clean_tasks if not t["skip_train"]] | |
eval_tasks = [t for t in clean_tasks if t["do_eval"]] | |
pprint([t["dataset_subset_template"] for t in train_tasks]) | |
print(len(train_tasks)) | |
pprint([f'{t["dataset_subset_template"]} {t["metrics"]}' for t in eval_tasks]) | |
print(len(eval_tasks)) | |
if __name__ == "__main__": | |
preview() | |