mrm8488's picture
Load models before using it
242e710
raw
history blame
1.88 kB
import gradio as gr
import torch
from transformers import RobertaTokenizerFast, BertTokenizerFast, EncoderDecoderModel
LANGUAGES = ["fr", "de", "tu", "es"]
models = dict()
tokenizers = dict()
models_paths = dict()
models_paths["fr"] = "mrm8488/camembert2camembert_shared-finetuned-french-summarization"
models_paths["de"] = "mrm8488/bert2bert_shared-german-finetuned-summarization"
models_paths["tu"] = "mrm8488/bert2bert_shared-turkish-summarization"
models_paths["es"] = "Narrativa/bsc_roberta2roberta_shared-spanish-finetuned-mlsum-summarization"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
for lang in LANGUAGES:
tokenizers[lang] = RobertaTokenizerFast.from_pretrained(models_paths[lang]) if lang in ["fr", "es"] else BertTokenizerFast.from_pretrained(models_paths[lang])
models[lang] = EncoderDecoderModel.from_pretrained(models_paths[lang]).to(device)
def summarize(lang, text):
tokenizer = tokenizers[lang]
model = models[lang]
inputs = tokenizer([text], padding="max_length",
truncation=True, max_length=512, return_tensors="pt")
input_ids = inputs.input_ids.to(device)
attention_mask = inputs.attention_mask.to(device)
output = model.generate(input_ids, attention_mask=attention_mask)
return tokenizer.decode(output[0], skip_special_tokens=True)
theme = "darkgrass"
title = "Multilingual Summarization model (MLSUM)"
description = "Gradio Demo for Summarization models trained on MLSUM dataset by Manuel Romero"
article = "<p style='text-align: center'><a href='https://hf.co/mrm8488' target='_blank'>More models</a></p>"
gr.Interface(fn=summarize, inputs=[gr.inputs.Radio(LANGUAGES), gr.inputs.Textbox(
lines=7, label="Input Text")], outputs="text", theme=theme, title=title, description=description, article=article, enable_queue=True).launch(inline=False)