|
import gradio as gr |
|
from fastai.vision.all import * |
|
import skimage |
|
|
|
learn = load_learner('pets_model.pkl') |
|
|
|
labels = learn.dls.vocab |
|
def predict(img): |
|
img = PILImage.create(img) |
|
pred,pred_idx,probs = learn.predict(img) |
|
return {labels[i]: float(probs[i]) for i in range(len(labels))} |
|
|
|
title = "Pet Breed Classifier" |
|
description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." |
|
article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>" |
|
examples = ['ragdoll.jpg', 'cat-1.jpeg', 'cat-2.jpeg'] |
|
interpretation='default' |
|
enable_queue=True |
|
|
|
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch() |
|
|