File size: 8,396 Bytes
5d12b6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e73bfb
 
 
 
5d12b6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e73bfb
5d12b6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import urllib.request
import fitz
import re
import numpy as np
import tensorflow_hub as hub
import openai
import gradio as gr
import os
from sklearn.neighbors import NearestNeighbors

def download_pdf(url, output_path):
    urllib.request.urlretrieve(url, output_path)


def preprocess(text):
    text = text.replace('\n', ' ')
    text = re.sub('\s+', ' ', text)
    return text


def pdf_to_text(path, start_page=1, end_page=None):
    doc = fitz.open(path)
    total_pages = doc.page_count

    if end_page is None:
        end_page = total_pages

    text_list = []

    for i in range(start_page-1, end_page):
        text = doc.load_page(i).get_text("text")
        text = preprocess(text)
        text_list.append(text)

    doc.close()
    return text_list


def text_to_chunks(texts, word_length=150, start_page=1):
    text_toks = [t.split(' ') for t in texts]
    page_nums = []
    chunks = []
    
    for idx, words in enumerate(text_toks):
        for i in range(0, len(words), word_length):
            chunk = words[i:i+word_length]
            if (i+word_length) > len(words) and (len(chunk) < word_length) and (
                len(text_toks) != (idx+1)):
                text_toks[idx+1] = chunk + text_toks[idx+1]
                continue
            chunk = ' '.join(chunk).strip()
            chunk = f'[{idx+start_page}]' + ' ' + '"' + chunk + '"'
            chunks.append(chunk)
    return chunks


class SemanticSearch:
    
    def __init__(self):
        self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
        self.fitted = False
    
    
    def fit(self, data, batch=1000, n_neighbors=5):
        self.data = data
        self.embeddings = self.get_text_embedding(data, batch=batch)
        n_neighbors = min(n_neighbors, len(self.embeddings))
        self.nn = NearestNeighbors(n_neighbors=n_neighbors)
        self.nn.fit(self.embeddings)
        self.fitted = True
    
    
    def __call__(self, text, return_data=True):
        inp_emb = self.use([text])
        neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
        
        if return_data:
            return [self.data[i] for i in neighbors]
        else:
            return neighbors
    
    
    def get_text_embedding(self, texts, batch=1000):
        embeddings = []
        for i in range(0, len(texts), batch):
            text_batch = texts[i:(i+batch)]
            emb_batch = self.use(text_batch)
            embeddings.append(emb_batch)
        embeddings = np.vstack(embeddings)
        return embeddings



#def load_recommender(path, start_page=1):
#    global recommender
#   texts = pdf_to_text(path, start_page=start_page)
#   chunks = text_to_chunks(texts, start_page=start_page)
#    recommender.fit(chunks)
#    return 'Corpus Loaded.'

# The modified function generates embeddings based on PDF file name and page number and checks if the embeddings file exists before loading or generating it.	
def load_recommender(path, start_page=1):
    global recommender
    pdf_file = os.path.basename(path)
    embeddings_file = f"{pdf_file}_{start_page}.npy"
    
    if os.path.isfile(embeddings_file):
        embeddings = np.load(embeddings_file)
        recommender.embeddings = embeddings
        recommender.fitted = True
        return "Embeddings loaded from file"
    
    texts = pdf_to_text(path, start_page=start_page)
    chunks = text_to_chunks(texts, start_page=start_page)
    recommender.fit(chunks)
    np.save(embeddings_file, recommender.embeddings)
    return 'Corpus Loaded.'



def generate_text(openAI_key,prompt, engine="text-davinci-003"):
    openai.api_key = openAI_key
    completions = openai.Completion.create(
        engine=engine,
        prompt=prompt,
        max_tokens=512,
        n=1,
        stop=None,
        temperature=0.7,
    )
    message = completions.choices[0].text
    return message
    
def generate_text2(openAI_key, prompt, engine="gpt-3.5-turbo-0301"):
    openai.api_key = openAI_key
    messages = [{'role': 'system', 'content': 'You are a helpful assistant.'},
                {'role': 'user', 'content': prompt}]
    
    completions = openai.ChatCompletion.create(
        model=engine,
        messages=messages,
        max_tokens=512,
        n=1,
        stop=None,
        temperature=0.7,
    )
    message = completions.choices[0].message['content']
    return message

def generate_answer(question,openAI_key):
    topn_chunks = recommender(question)
    prompt = ""
    prompt += 'search results:\n\n'
    for c in topn_chunks:
        prompt += c + '\n\n'
        
    prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
              "Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\
              "Citation should be done at the end of each sentence. If the search results mention multiple subjects "\
              "with the same name, create separate answers for each. Only include information found in the results and "\
              "don't add any additional information. Make sure the answer is correct and don't output false content. "\
              "If the text does not relate to the query, simply state 'Text Not Found in PDF'. Ignore outlier "\
              "search results which has nothing to do with the question. Only answer what is asked. The "\
              "answer should be short and concise. Answer step-by-step. \n\nQuery: {question}\nAnswer: "
    
    prompt += f"Query: {question}\nAnswer:"
    answer = generate_text(openAI_key, prompt,"text-davinci-003")
    return answer


def question_answer(url, file, question,openAI_key):
    if openAI_key.strip()=='':
        return '[ERROR]: Please enter you Open AI Key. Get your key here : https://platform.openai.com/account/api-keys'
    if url.strip() == '' and file == None:
        return '[ERROR]: Both URL and PDF is empty. Provide atleast one.'
    
    if url.strip() != '' and file != None:
        return '[ERROR]: Both URL and PDF is provided. Please provide only one (eiter URL or PDF).'

    if url.strip() != '':
        glob_url = url
        download_pdf(glob_url, 'corpus.pdf')
        load_recommender('corpus.pdf')

    else:
        old_file_name = file.name
        file_name = file.name
        file_name = file_name[:-12] + file_name[-4:]
        os.rename(old_file_name, file_name)
        load_recommender(file_name)

    if question.strip() == '':
        return '[ERROR]: Question field is empty'

    return generate_answer(question,openAI_key)


recommender = SemanticSearch()

title = 'Chat with Your PDFs'
description = """ Instructions
1. Input your API Key
2. Upload PDF"""

with gr.Blocks() as demo:

    gr.Markdown(f'<center><h1>{title}</h1></center>')
    gr.Markdown(description)

    with gr.Row():
        
        with gr.Group():
            gr.Markdown(f'<p style="text-align:center">Get your Open AI API key <a href="https://platform.openai.com/account/api-keys">here</a></p>')
            openAI_key=gr.Textbox(label='Enter your OpenAI API key here')
            url = gr.Textbox(label='Enter PDF URL here')
            gr.Markdown("<center><h4>OR<h4></center>")
            file = gr.File(label='Upload your PDF/ Research Paper / Book here', file_types=['.pdf'])
            question = gr.Textbox(label='Enter your question here')
            btn = gr.Button(value='Submit')
            btn.style(full_width=True)

        with gr.Group():
            answer = gr.Textbox(label='Answer :')

        btn.click(question_answer, inputs=[url, file, question,openAI_key], outputs=[answer])
#openai.api_key = os.getenv('Your_Key_Here') 
demo.launch()


# import streamlit as st

# #Define the app layout
# st.markdown(f'<center><h1>{title}</h1></center>', unsafe_allow_html=True)
# st.markdown(description)

# col1, col2 = st.columns(2)

# # Define the inputs in the first column
# with col1:
#     url = st.text_input('URL')
#     st.markdown("<center><h6>or<h6></center>", unsafe_allow_html=True)
#     file = st.file_uploader('PDF', type='pdf')
#     question = st.text_input('question')
#     btn = st.button('Submit')

# # Define the output in the second column
# with col2:
#     answer = st.text_input('answer')

# # Define the button action
# if btn:
#     answer_value = question_answer(url, file, question)
#     answer.value = answer_value