import urllib.request import fitz import re import numpy as np import tensorflow_hub as hub import openai import gradio as gr import os from sklearn.neighbors import NearestNeighbors def download_pdf(url, output_path): urllib.request.urlretrieve(url, output_path) def preprocess(text): text = text.replace('\n', ' ') text = re.sub('\s+', ' ', text) return text def pdf_to_text(path, start_page=1, end_page=None): doc = fitz.open(path) total_pages = doc.page_count if end_page is None: end_page = total_pages text_list = [] for i in range(start_page-1, end_page): text = doc.load_page(i).get_text("text") text = preprocess(text) text_list.append(text) doc.close() return text_list def text_to_chunks(texts, word_length=150, start_page=1): text_toks = [t.split(' ') for t in texts] page_nums = [] chunks = [] for idx, words in enumerate(text_toks): for i in range(0, len(words), word_length): chunk = words[i:i+word_length] if (i+word_length) > len(words) and (len(chunk) < word_length) and ( len(text_toks) != (idx+1)): text_toks[idx+1] = chunk + text_toks[idx+1] continue chunk = ' '.join(chunk).strip() chunk = f'[{idx+start_page}]' + ' ' + '"' + chunk + '"' chunks.append(chunk) return chunks class SemanticSearch: def __init__(self): self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4') self.fitted = False def fit(self, data, batch=1000, n_neighbors=5): self.data = data self.embeddings = self.get_text_embedding(data, batch=batch) n_neighbors = min(n_neighbors, len(self.embeddings)) self.nn = NearestNeighbors(n_neighbors=n_neighbors) self.nn.fit(self.embeddings) self.fitted = True def __call__(self, text, return_data=True): inp_emb = self.use([text]) neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0] if return_data: return [self.data[i] for i in neighbors] else: return neighbors def get_text_embedding(self, texts, batch=1000): embeddings = [] for i in range(0, len(texts), batch): text_batch = texts[i:(i+batch)] emb_batch = self.use(text_batch) embeddings.append(emb_batch) embeddings = np.vstack(embeddings) return embeddings #def load_recommender(path, start_page=1): # global recommender # texts = pdf_to_text(path, start_page=start_page) # chunks = text_to_chunks(texts, start_page=start_page) # recommender.fit(chunks) # return 'Corpus Loaded.' # The modified function generates embeddings based on PDF file name and page number and checks if the embeddings file exists before loading or generating it. def load_recommender(path, start_page=1): global recommender pdf_file = os.path.basename(path) embeddings_file = f"{pdf_file}_{start_page}.npy" if os.path.isfile(embeddings_file): embeddings = np.load(embeddings_file) recommender.embeddings = embeddings recommender.fitted = True return "Embeddings loaded from file" texts = pdf_to_text(path, start_page=start_page) chunks = text_to_chunks(texts, start_page=start_page) recommender.fit(chunks) np.save(embeddings_file, recommender.embeddings) return 'Corpus Loaded.' def generate_text(openAI_key,prompt, engine="text-davinci-003"): openai.api_key = openAI_key completions = openai.Completion.create( engine=engine, prompt=prompt, max_tokens=512, n=1, stop=None, temperature=0.7, ) message = completions.choices[0].text return message def generate_text2(openAI_key, prompt, engine="gpt-3.5-turbo-0301"): openai.api_key = openAI_key messages = [{'role': 'system', 'content': 'You are a helpful assistant.'}, {'role': 'user', 'content': prompt}] completions = openai.ChatCompletion.create( model=engine, messages=messages, max_tokens=512, n=1, stop=None, temperature=0.7, ) message = completions.choices[0].message['content'] return message def generate_answer(question,openAI_key): topn_chunks = recommender(question) prompt = "" prompt += 'search results:\n\n' for c in topn_chunks: prompt += c + '\n\n' prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\ "Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\ "Citation should be done at the end of each sentence. If the search results mention multiple subjects "\ "with the same name, create separate answers for each. Only include information found in the results and "\ "don't add any additional information. Make sure the answer is correct and don't output false content. "\ "If the text does not relate to the query, simply state 'Text Not Found in PDF'. Ignore outlier "\ "search results which has nothing to do with the question. Only answer what is asked. The "\ "answer should be short and concise. Answer step-by-step. \n\nQuery: {question}\nAnswer: " prompt += f"Query: {question}\nAnswer:" answer = generate_text(openAI_key, prompt,"text-davinci-003") return answer def question_answer(url, file, question,openAI_key): if openAI_key.strip()=='': return '[ERROR]: Please enter you Open AI Key. Get your key here : https://platform.openai.com/account/api-keys' if url.strip() == '' and file == None: return '[ERROR]: Both URL and PDF is empty. Provide atleast one.' if url.strip() != '' and file != None: return '[ERROR]: Both URL and PDF is provided. Please provide only one (eiter URL or PDF).' if url.strip() != '': glob_url = url download_pdf(glob_url, 'corpus.pdf') load_recommender('corpus.pdf') else: old_file_name = file.name file_name = file.name file_name = file_name[:-12] + file_name[-4:] os.rename(old_file_name, file_name) load_recommender(file_name) if question.strip() == '': return '[ERROR]: Question field is empty' return generate_answer(question,openAI_key) recommender = SemanticSearch() title = 'Chat with Your PDFs' description = """ Instructions 1. Input your API Key 2. Upload PDF""" with gr.Blocks() as demo: gr.Markdown(f'
Get your Open AI API key here
') openAI_key=gr.Textbox(label='Enter your OpenAI API key here') url = gr.Textbox(label='Enter PDF URL here') gr.Markdown("