import gradio as gr from tensorflow.keras.models import load_model from tensorflow.keras.layers import DepthwiseConv2D from PIL import Image, ImageOps import numpy as np # Disable scientific notation for clarity np.set_printoptions(suppress=True) # Custom object for DepthwiseConv2D custom_objects = {'DepthwiseConv2D': DepthwiseConv2D} # Load the model with custom objects model = load_model("model/pleasuredomes_image_model.h5", custom_objects=custom_objects, compile=False) # Load the labels class_names = open("model/labels.txt", "r").readlines() def predict_image(image): """ Function to process the image and make a prediction using the loaded model. """ # Resize the image to be at least 224x224 and then crop from the center size = (224, 224) image = ImageOps.fit(image, size, Image.Resampling.LANCZOS) # Turn the image into a numpy array image_array = np.asarray(image) # Normalize the image normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1 # Create the array of the right shape to feed into the keras model data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32) data[0] = normalized_image_array # Predict the model prediction = model.predict(data) index = np.argmax(prediction) class_name = class_names[index].strip() confidence_score = prediction[0][index] return f"Class: {class_name}, Confidence Score: {confidence_score:.2f}" # Create a Gradio interface interface = gr.Interface( fn=predict_image, inputs=gr.Image(type="pil"), # Updated to gr.Image outputs="text", title="Image Classification", description="Upload an image to classify it using the pre-trained model.", flagging_options=None ) # Launch the interface if __name__ == "__main__": interface.launch(share=False)