Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,9 +2,16 @@ import evaluate
|
|
2 |
from evaluate.utils import launch_gradio_widget
|
3 |
import gradio as gr
|
4 |
from transformers import AutoModelForSequenceClassification, pipeline, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Create a Gradio interface with audio file and text inputs
|
7 |
-
def classify_toxicity(audio_file, text_input):
|
8 |
# Transcribe the audio file using Whisper ASR
|
9 |
if audio_file != None:
|
10 |
whisper_module = evaluate.load("whisper")
|
@@ -23,16 +30,31 @@ def classify_toxicity(audio_file, text_input):
|
|
23 |
|
24 |
toxicity_score = toxicity_results["toxicity"][0]
|
25 |
print(toxicity_score)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
return toxicity_score, transcribed_text
|
27 |
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
|
28 |
|
29 |
with gr.Blocks() as iface:
|
|
|
|
|
30 |
with gr.Column():
|
31 |
aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
|
32 |
text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
|
33 |
submit_btn = gr.Button(label="Run")
|
34 |
with gr.Column():
|
35 |
out_text = gr.Textbox()
|
36 |
-
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text], outputs=out_text)
|
37 |
|
38 |
iface.launch()
|
|
|
2 |
from evaluate.utils import launch_gradio_widget
|
3 |
import gradio as gr
|
4 |
from transformers import AutoModelForSequenceClassification, pipeline, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer
|
5 |
+
# pull in emotion detection
|
6 |
+
# --- Add element for specification
|
7 |
+
# pull in text classification
|
8 |
+
# --- Add custom labels
|
9 |
+
# --- Associate labels with radio elements
|
10 |
+
# add logic to initiate mock notificaiton when detected
|
11 |
+
# pull in misophonia-specific model
|
12 |
|
13 |
# Create a Gradio interface with audio file and text inputs
|
14 |
+
def classify_toxicity(audio_file, text_input, classify_anxiety):
|
15 |
# Transcribe the audio file using Whisper ASR
|
16 |
if audio_file != None:
|
17 |
whisper_module = evaluate.load("whisper")
|
|
|
30 |
|
31 |
toxicity_score = toxicity_results["toxicity"][0]
|
32 |
print(toxicity_score)
|
33 |
+
|
34 |
+
# Text classification
|
35 |
+
|
36 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
37 |
+
|
38 |
+
classifiation_model = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli")
|
39 |
+
|
40 |
+
sequence_to_classify = transcribed_text
|
41 |
+
candidate_labels = classify_anxiety
|
42 |
+
classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
|
43 |
+
print(classification_output)
|
44 |
+
|
45 |
+
|
46 |
return toxicity_score, transcribed_text
|
47 |
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
|
48 |
|
49 |
with gr.Blocks() as iface:
|
50 |
+
with gr.Column():
|
51 |
+
classify = gr.Radio(["racial identity hate", "LGBTQ+ hate", "sexually explicit", "misophonia"])
|
52 |
with gr.Column():
|
53 |
aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
|
54 |
text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
|
55 |
submit_btn = gr.Button(label="Run")
|
56 |
with gr.Column():
|
57 |
out_text = gr.Textbox()
|
58 |
+
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, classify], outputs=out_text)
|
59 |
|
60 |
iface.launch()
|