Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -22,6 +22,14 @@ emo_dict = {
|
|
22 |
'neu': 'Neutral'
|
23 |
}
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
pipe = pipeline("automatic-speech-recognition")
|
26 |
|
27 |
# Create a Gradio interface with audio file and text inputs
|
@@ -54,7 +62,7 @@ def classify_toxicity(audio_file, text_input, classify_anxiety):
|
|
54 |
text_classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli")
|
55 |
|
56 |
sequence_to_classify = transcribed_text
|
57 |
-
candidate_labels = classify_anxiety
|
58 |
# classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
|
59 |
classification_output = text_classifier(sequence_to_classify, candidate_labels, multi_label=False)
|
60 |
print(classification_output)
|
@@ -69,7 +77,7 @@ def classify_toxicity(audio_file, text_input, classify_anxiety):
|
|
69 |
|
70 |
with gr.Blocks() as iface:
|
71 |
with gr.Column():
|
72 |
-
classify = gr.Radio(["
|
73 |
with gr.Column():
|
74 |
aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
|
75 |
text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
|
|
|
22 |
'neu': 'Neutral'
|
23 |
}
|
24 |
|
25 |
+
# static classes for now, but it would be best ot have the user select from multiple, and to enter their own
|
26 |
+
class_options = {
|
27 |
+
"racism": ["racism", "hate speech", "bigotry", "racially targeted", "racially diminutive", "racial slur", "ethnic slur", "ethnic hate", "pro-white nationalism"],
|
28 |
+
"LGBTQ+ hate": ["homophobia", "gay slur", "trans slur", "homophobic slur", "transphobia", "anti-LBGTQ+", "hate speech"],
|
29 |
+
"sexually explicit": ["sexually explicit", "sexually coercive", "sexual exploitation", "vulgar", "raunchy", "sexually demeaning", "sexual violence", "victim blaming"],
|
30 |
+
"misophonia": ["chewing", "breathing", "mouthsounds", "popping", "sneezing", "yawning", "smacking", "sniffling", "panting"]
|
31 |
+
}
|
32 |
+
|
33 |
pipe = pipeline("automatic-speech-recognition")
|
34 |
|
35 |
# Create a Gradio interface with audio file and text inputs
|
|
|
62 |
text_classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli")
|
63 |
|
64 |
sequence_to_classify = transcribed_text
|
65 |
+
candidate_labels = class_options.get(classify_anxiety, [])
|
66 |
# classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
|
67 |
classification_output = text_classifier(sequence_to_classify, candidate_labels, multi_label=False)
|
68 |
print(classification_output)
|
|
|
77 |
|
78 |
with gr.Blocks() as iface:
|
79 |
with gr.Column():
|
80 |
+
classify = gr.Radio(["racism", "LGBTQ+ hate", "sexually explicit", "misophonia"])
|
81 |
with gr.Column():
|
82 |
aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
|
83 |
text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
|