Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -33,7 +33,8 @@ def classify_toxicity(audio_file, text_input, classify_anxiety):
|
|
33 |
else:
|
34 |
transcribed_text = text_input
|
35 |
|
36 |
-
|
|
|
37 |
toxicity_module = evaluate.load("toxicity", "facebook/roberta-hate-speech-dynabench-r4-target")
|
38 |
#toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement")
|
39 |
|
@@ -42,18 +43,20 @@ def classify_toxicity(audio_file, text_input, classify_anxiety):
|
|
42 |
toxicity_score = toxicity_results["toxicity"][0]
|
43 |
print(toxicity_score)
|
44 |
|
45 |
-
|
46 |
|
47 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
48 |
|
49 |
-
|
50 |
|
51 |
sequence_to_classify = transcribed_text
|
52 |
candidate_labels = classify_anxiety
|
53 |
-
classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
|
|
|
54 |
print(classification_output)
|
55 |
|
56 |
-
|
|
|
57 |
emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
|
58 |
out_prob, score, index, text_lab = learner.classify_file(audio_file.name)
|
59 |
|
|
|
33 |
else:
|
34 |
transcribed_text = text_input
|
35 |
|
36 |
+
#### Toxicity Classifier ####
|
37 |
+
|
38 |
toxicity_module = evaluate.load("toxicity", "facebook/roberta-hate-speech-dynabench-r4-target")
|
39 |
#toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement")
|
40 |
|
|
|
43 |
toxicity_score = toxicity_results["toxicity"][0]
|
44 |
print(toxicity_score)
|
45 |
|
46 |
+
#### Text classification #####
|
47 |
|
48 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
49 |
|
50 |
+
text_classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli")
|
51 |
|
52 |
sequence_to_classify = transcribed_text
|
53 |
candidate_labels = classify_anxiety
|
54 |
+
# classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
|
55 |
+
classification_output = text_classifier(sequence_to_classify, candidate_labels, multi_label=False)
|
56 |
print(classification_output)
|
57 |
|
58 |
+
#### Emotion classification ####
|
59 |
+
|
60 |
emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
|
61 |
out_prob, score, index, text_lab = learner.classify_file(audio_file.name)
|
62 |
|