Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -93,42 +93,50 @@ def classify_toxicity(audio_file, classify_anxiety, emo_class, explitive_selecti
|
|
93 |
classify_emotion(audio_file)
|
94 |
|
95 |
#### Text classification #####
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
text_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
100 |
-
|
101 |
-
sequence_to_classify = transcribed_text
|
102 |
-
print(classify_anxiety, class_options)
|
103 |
-
candidate_labels = class_options.get(classify_anxiety, [])
|
104 |
-
# classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
|
105 |
-
classification_output = text_classifier(sequence_to_classify, candidate_labels, multi_label=True)
|
106 |
-
print("class output ", type(classification_output))
|
107 |
-
# classification_df = pd.DataFrame.from_dict(classification_output)
|
108 |
-
print("keys ", classification_output.keys())
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
else:
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
124 |
else:
|
125 |
-
if
|
126 |
affirm = positive_affirmations()
|
127 |
topScore = toxicity_score
|
128 |
else:
|
129 |
-
print("Not Toxic")
|
130 |
affirm = ""
|
131 |
topScore = toxicity_score
|
|
|
132 |
|
133 |
return transcribed_text, topScore, label_score_dict, affirm
|
134 |
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
|
|
|
93 |
classify_emotion(audio_file)
|
94 |
|
95 |
#### Text classification #####
|
96 |
+
if classify_anxiety != None:
|
97 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
text_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
100 |
+
|
101 |
+
sequence_to_classify = transcribed_text
|
102 |
+
print(classify_anxiety, class_options)
|
103 |
+
candidate_labels = class_options.get(classify_anxiety, [])
|
104 |
+
# classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
|
105 |
+
classification_output = text_classifier(sequence_to_classify, candidate_labels, multi_label=True)
|
106 |
+
print("class output ", type(classification_output))
|
107 |
+
# classification_df = pd.DataFrame.from_dict(classification_output)
|
108 |
+
print("keys ", classification_output.keys())
|
109 |
+
|
110 |
+
# formatted_classification_output = "\n".join([f"{key}: {value}" for key, value in classification_output.items()])
|
111 |
+
# label_score_pairs = [(label, score) for label, score in zip(classification_output['labels'], classification_output['scores'])]
|
112 |
+
label_score_dict = {label: score for label, score in zip(classification_output['labels'], classification_output['scores'])}
|
113 |
+
k = max(label_score_dict, key=label_score_dict.get)
|
114 |
+
maxval = label_score_dict[k]
|
115 |
+
if maxval > toxicity_score:
|
116 |
+
if maxval > threshold:
|
117 |
+
print("Toxic")
|
118 |
+
affirm = positive_affirmations()
|
119 |
+
topScore = maxval
|
120 |
+
else:
|
121 |
+
print("Not Toxic")
|
122 |
+
affirm = ""
|
123 |
+
topScore = maxval
|
124 |
else:
|
125 |
+
if toxicity_score > threshold:
|
126 |
+
affirm = positive_affirmations()
|
127 |
+
topScore = toxicity_score
|
128 |
+
else:
|
129 |
+
print("Not Toxic")
|
130 |
+
affirm = ""
|
131 |
+
topScore = toxicity_score
|
132 |
else:
|
133 |
+
if toxixity_score > threshold:
|
134 |
affirm = positive_affirmations()
|
135 |
topScore = toxicity_score
|
136 |
else:
|
|
|
137 |
affirm = ""
|
138 |
topScore = toxicity_score
|
139 |
+
label_score_dict = {"toxicity" : toxicity_score}
|
140 |
|
141 |
return transcribed_text, topScore, label_score_dict, affirm
|
142 |
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
|