mskov commited on
Commit
b394174
1 Parent(s): 0c2e961

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -28
app.py CHANGED
@@ -93,42 +93,50 @@ def classify_toxicity(audio_file, classify_anxiety, emo_class, explitive_selecti
93
  classify_emotion(audio_file)
94
 
95
  #### Text classification #####
96
-
97
- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
98
-
99
- text_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
100
-
101
- sequence_to_classify = transcribed_text
102
- print(classify_anxiety, class_options)
103
- candidate_labels = class_options.get(classify_anxiety, [])
104
- # classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
105
- classification_output = text_classifier(sequence_to_classify, candidate_labels, multi_label=True)
106
- print("class output ", type(classification_output))
107
- # classification_df = pd.DataFrame.from_dict(classification_output)
108
- print("keys ", classification_output.keys())
109
 
110
- # formatted_classification_output = "\n".join([f"{key}: {value}" for key, value in classification_output.items()])
111
- # label_score_pairs = [(label, score) for label, score in zip(classification_output['labels'], classification_output['scores'])]
112
- label_score_dict = {label: score for label, score in zip(classification_output['labels'], classification_output['scores'])}
113
- k = max(label_score_dict, key=label_score_dict.get)
114
- maxval = label_score_dict[k]
115
- if maxval > toxicity_score:
116
- if maxval > threshold:
117
- print("Toxic")
118
- affirm = positive_affirmations()
119
- topScore = maxval
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
  else:
121
- print("Not Toxic")
122
- affirm = ""
123
- topScore = maxval
 
 
 
 
124
  else:
125
- if toxicity_score > threshold:
126
  affirm = positive_affirmations()
127
  topScore = toxicity_score
128
  else:
129
- print("Not Toxic")
130
  affirm = ""
131
  topScore = toxicity_score
 
132
 
133
  return transcribed_text, topScore, label_score_dict, affirm
134
  # return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
 
93
  classify_emotion(audio_file)
94
 
95
  #### Text classification #####
96
+ if classify_anxiety != None:
97
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
 
 
 
 
 
 
 
 
 
 
 
98
 
99
+ text_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
100
+
101
+ sequence_to_classify = transcribed_text
102
+ print(classify_anxiety, class_options)
103
+ candidate_labels = class_options.get(classify_anxiety, [])
104
+ # classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
105
+ classification_output = text_classifier(sequence_to_classify, candidate_labels, multi_label=True)
106
+ print("class output ", type(classification_output))
107
+ # classification_df = pd.DataFrame.from_dict(classification_output)
108
+ print("keys ", classification_output.keys())
109
+
110
+ # formatted_classification_output = "\n".join([f"{key}: {value}" for key, value in classification_output.items()])
111
+ # label_score_pairs = [(label, score) for label, score in zip(classification_output['labels'], classification_output['scores'])]
112
+ label_score_dict = {label: score for label, score in zip(classification_output['labels'], classification_output['scores'])}
113
+ k = max(label_score_dict, key=label_score_dict.get)
114
+ maxval = label_score_dict[k]
115
+ if maxval > toxicity_score:
116
+ if maxval > threshold:
117
+ print("Toxic")
118
+ affirm = positive_affirmations()
119
+ topScore = maxval
120
+ else:
121
+ print("Not Toxic")
122
+ affirm = ""
123
+ topScore = maxval
124
  else:
125
+ if toxicity_score > threshold:
126
+ affirm = positive_affirmations()
127
+ topScore = toxicity_score
128
+ else:
129
+ print("Not Toxic")
130
+ affirm = ""
131
+ topScore = toxicity_score
132
  else:
133
+ if toxixity_score > threshold:
134
  affirm = positive_affirmations()
135
  topScore = toxicity_score
136
  else:
 
137
  affirm = ""
138
  topScore = toxicity_score
139
+ label_score_dict = {"toxicity" : toxicity_score}
140
 
141
  return transcribed_text, topScore, label_score_dict, affirm
142
  # return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"