mskov commited on
Commit
d90b7ed
·
1 Parent(s): b5a47a6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -4
app.py CHANGED
@@ -42,9 +42,14 @@ class_options = {
42
 
43
  pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large")
44
 
 
 
 
 
 
45
  def classify_emotion(audio):
46
  #### Emotion classification ####
47
- emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
48
  out_prob, score, index, text_lab = emotion_classifier.classify_file(audio)
49
  return emo_dict[text_lab[0]]
50
 
@@ -80,22 +85,23 @@ def classify_toxicity(audio_file, classify_anxiety, emo_class, explitive_selecti
80
 
81
  #### Toxicity Classifier ####
82
 
83
- toxicity_module = evaluate.load("toxicity", "facebook/roberta-hate-speech-dynabench-r4-target")
84
  #toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement")
85
 
86
  toxicity_results = toxicity_module.compute(predictions=[transcribed_text])
87
 
88
  toxicity_score = toxicity_results["toxicity"][0]
89
  print(toxicity_score)
 
90
  # emo call
91
  if emo_class != None:
92
  classify_emotion(audio_file)
93
 
94
  #### Text classification #####
95
  if classify_anxiety != None:
96
- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
97
 
98
- text_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
99
 
100
  sequence_to_classify = transcribed_text
101
  print(classify_anxiety, class_options)
 
42
 
43
  pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large")
44
 
45
+ toxicity_module = evaluate.load("toxicity", "facebook/roberta-hate-speech-dynabench-r4-target")
46
+ emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
47
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
48
+ text_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
49
+
50
  def classify_emotion(audio):
51
  #### Emotion classification ####
52
+ # EMO MODEL LINE emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
53
  out_prob, score, index, text_lab = emotion_classifier.classify_file(audio)
54
  return emo_dict[text_lab[0]]
55
 
 
85
 
86
  #### Toxicity Classifier ####
87
 
88
+ # TOX MODEL LINE toxicity_module = evaluate.load("toxicity", "facebook/roberta-hate-speech-dynabench-r4-target")
89
  #toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement")
90
 
91
  toxicity_results = toxicity_module.compute(predictions=[transcribed_text])
92
 
93
  toxicity_score = toxicity_results["toxicity"][0]
94
  print(toxicity_score)
95
+
96
  # emo call
97
  if emo_class != None:
98
  classify_emotion(audio_file)
99
 
100
  #### Text classification #####
101
  if classify_anxiety != None:
102
+ # DEVICE LINE device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
103
 
104
+ # CLASSIFICATION LINE text_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
105
 
106
  sequence_to_classify = transcribed_text
107
  print(classify_anxiety, class_options)