mskov commited on
Commit
dd5c246
1 Parent(s): 401d5c0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -2
app.py CHANGED
@@ -49,7 +49,7 @@ def classify_emotion(audio):
49
  return emo_dict[text_lab[0]]
50
 
51
  # Create a Gradio interface with audio file and text inputs
52
- def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class, explitive_selection):
53
  # Transcribe the audio file using Whisper ASR
54
  if audio_file != None:
55
  transcribed_text = pipe(audio_file)["text"]
@@ -57,6 +57,8 @@ def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class, expli
57
  transcribed_text = text_input
58
  if classify_anxiety != "misophonia":
59
  print("emo_class ", emo_class, "explitive select", explitive_selection)
 
 
60
 
61
  #------- explitive call ---------------
62
 
@@ -134,6 +136,7 @@ with gr.Blocks() as iface:
134
  anxiety_class = gr.Radio(["racism", "LGBTQ+ hate", "sexually explicit", "misophonia"])
135
  explit_preference = gr.Radio(choices=["N-Word", "B-Word", "All Explitives"], label="Words to omit from general anxiety classes", info="certain words may be acceptible within certain contects for given groups of people, and some people may be unbothered by explitives broadly speaking.")
136
  emo_class = gr.Radio(choices=["negaitve emotionality"], label="label", info="Select if you would like explitives to be considered anxiety-indiucing in the case of anger/ negative emotionality.")
 
137
  with gr.Column():
138
  aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
139
  text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
@@ -142,6 +145,6 @@ with gr.Blocks() as iface:
142
  out_val = gr.Textbox()
143
  out_class = gr.Textbox()
144
  out_text = gr.Textbox()
145
- submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class, emo_class, explit_preference], outputs=[out_val, plot, out_text])
146
 
147
  iface.launch()
 
49
  return emo_dict[text_lab[0]]
50
 
51
  # Create a Gradio interface with audio file and text inputs
52
+ def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class, explitive_selection, slider):
53
  # Transcribe the audio file using Whisper ASR
54
  if audio_file != None:
55
  transcribed_text = pipe(audio_file)["text"]
 
57
  transcribed_text = text_input
58
  if classify_anxiety != "misophonia":
59
  print("emo_class ", emo_class, "explitive select", explitive_selection)
60
+
61
+ ## SLIDER ##
62
 
63
  #------- explitive call ---------------
64
 
 
136
  anxiety_class = gr.Radio(["racism", "LGBTQ+ hate", "sexually explicit", "misophonia"])
137
  explit_preference = gr.Radio(choices=["N-Word", "B-Word", "All Explitives"], label="Words to omit from general anxiety classes", info="certain words may be acceptible within certain contects for given groups of people, and some people may be unbothered by explitives broadly speaking.")
138
  emo_class = gr.Radio(choices=["negaitve emotionality"], label="label", info="Select if you would like explitives to be considered anxiety-indiucing in the case of anger/ negative emotionality.")
139
+ sense_slider = gr.Slider(minimum=1, maximum=5, label="How readily do you want the tool to intervene? 1 = in extreme cases and 5 = at every opportunity")
140
  with gr.Column():
141
  aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
142
  text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
 
145
  out_val = gr.Textbox()
146
  out_class = gr.Textbox()
147
  out_text = gr.Textbox()
148
+ submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class, emo_class, explit_preference, sense_slider], outputs=[out_val, out_class, out_text])
149
 
150
  iface.launch()