Spaces:
Sleeping
Sleeping
abdulmatinomotoso
commited on
Commit
·
c29d314
1
Parent(s):
7b32e40
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#importing the necessary libraries
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
+
import torch
|
7 |
+
|
8 |
+
#Defining the labels of the models
|
9 |
+
labels = ['Politics', 'Tech', 'Entertainment', 'Business', 'World', 'Sport']
|
10 |
+
|
11 |
+
#Defining the models and tokenuzer
|
12 |
+
model_name = 'valurank/finetuned-distilbert-news-article-categorization'
|
13 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
+
|
16 |
+
#Reading in the text file
|
17 |
+
def read_in_text(url):
|
18 |
+
with open(url, 'r') as file:
|
19 |
+
article = file.read()
|
20 |
+
return article
|
21 |
+
|
22 |
+
#Defining a function to get the category of the news article
|
23 |
+
def get_category(file):
|
24 |
+
text = read_in_text(file.name)
|
25 |
+
|
26 |
+
input_tensor = tokenizer.encode(text, return_tensors='pt', truncation=True)
|
27 |
+
logits = model(input_tensor).logits
|
28 |
+
|
29 |
+
softmax = torch.nn.Softmax(dim=1)
|
30 |
+
probs = softmax(logits)[0]
|
31 |
+
probs = probs.cpu().detach().numpy()
|
32 |
+
max_index = np.argmax(probs)
|
33 |
+
emotion = labels[max_index]
|
34 |
+
return emotion
|
35 |
+
|
36 |
+
#Creating the interface for the radio app
|
37 |
+
demo = gr.Interface(get_category, inputs=gr.inputs.File(label='Upload your .txt file here'),
|
38 |
+
outputs = 'text',
|
39 |
+
title='News Article Categorization')
|
40 |
+
|
41 |
+
|
42 |
+
#Launching the radio app
|
43 |
+
if __name__ == '__main__':
|
44 |
+
demo.launch(debug=True)
|