#importing the necessary libraries import gradio as gr import numpy as np import pandas as pd import re from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch #Defining the labels of the models labels = ["business", "science","health", "world", "sport", "politics", "entertainment", "tech"] #Defining the models and tokenuzer model_name = "valurank/finetuned-distilbert-news-article-categorization" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) #Reading in the text file def read_in_text(url): with open(url, 'r') as file: article = file.read() return article def clean_text(url): text = url text = text.encode("ascii", errors="ignore").decode( "ascii" ) # remove non-ascii, Chinese characters text = re.sub(r"\n", " ", text) text = re.sub(r"\n\n", " ", text) text = re.sub(r"\t", " ", text) text = text.strip(" ") text = re.sub( " +", " ", text ).strip() # get rid of multiple spaces and replace with a single text = re.sub(r"Date\s\d{1,2}\/\d{1,2}\/\d{4}", "", text) #remove date text = re.sub(r"\d{1,2}:\d{2}\s[A-Z]+\s[A-Z]+", "", text) #remove time return text #Defining a function to get the category of the news article def get_category(file): text = clean_text(file) input_tensor = tokenizer.encode(text, return_tensors="pt", truncation=True) logits = model(input_tensor).logits softmax = torch.nn.Softmax(dim=1) probs = softmax(logits)[0] probs = probs.cpu().detach().numpy() max_index = np.argmax(probs) emotion = labels[max_index] return emotion #Creating the interface for the radio app demo = gr.Interface(get_category, inputs=gr.inputs.Textbox(label="Drop your articles here"), outputs = "text", title="News Article Categorization") #Launching the gradio app if __name__ == "__main__": demo.launch(debug=True)