mtauro commited on
Commit
c242118
1 Parent(s): a622c3d

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -0
app.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from speechbrain.pretrained.interfaces import foreign_class
2
+ import gradio as gr
3
+ import nltk
4
+ import librosa
5
+
6
+ import warnings
7
+ warnings.filterwarnings("ignore")
8
+
9
+ # Loading the speechbrain emotion detection model
10
+ learner = foreign_class(source="mtauro/wavlm_vrs_ck_iva_k492",
11
+ pymodule_file="custom_interface.py",
12
+ classname="CustomEncoderWav2vec2Classifier")
13
+
14
+
15
+ # Building prediction function for gradio
16
+ emotion_dict = {
17
+ 'HC': 'No AD detected',
18
+ 'AD': 'Signs of AD detected',
19
+
20
+ }
21
+
22
+ #def predict_emotion(audio):
23
+ # out_prob, score, index, text_lab = learner.classify_file(audio.name)
24
+ # return emotion_dict[text_lab[0]]
25
+
26
+ def detect_ad(audio):
27
+ out_prob, score, index, text_lab = learner.classify_file(audio.name)
28
+ return emotion_dict[text_lab[0]]
29
+
30
+ # Loading gradio interface
31
+ #inputs = gr.inputs.Audio(label="Input Audio", type="file")
32
+ #input_1 = gr.inputs.Audio(label="Input Audio", type="file")
33
+ ##inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Please record your voice")
34
+ #outputs = "text"
35
+ #title = "AD Detection"
36
+ #description = "Testing"
37
+ #gr.Interface(detect_ad, inputs, outputs, title=title, description=description).launch()
38
+ #gr.Interface(detect_ad, input_1, outputs, title=title, description=description).launch()
39
+
40
+ gr.Interface(detect_ad,
41
+ inputs = gr.inputs.Audio(source="microphone", type="file", optional=True, label="Please speak for 13-30 seconds"),
42
+ outputs = gr.outputs.Textbox(label="Output Text"),
43
+ title="AD Detection",
44
+ description = "Testing",
45
+ #examples = [["Test_File1.wav"], ["Test_File2.wav"], ["Test_File3.wav"]],
46
+ theme="grass").launch()