leaderboard / app.py
Tom Aarsen
Update edge case where model is not specified
a9153cc
raw
history blame
32.3 kB
from functools import partial, reduce
import json
import os
import re
from datasets import load_dataset
import gradio as gr
from huggingface_hub import hf_hub_download
from huggingface_hub.repocard import metadata_load
import pandas as pd
from tqdm.autonotebook import tqdm
from utils.model_size import get_model_parameters_memory
from envs import LEADERBOARD_CONFIG, MODEL_META, REPO_ID, RESULTS_REPO, API
TASKS_CONFIG = LEADERBOARD_CONFIG["tasks"]
BOARDS_CONFIG = LEADERBOARD_CONFIG["boards"]
TASKS = list(TASKS_CONFIG.keys())
PRETTY_NAMES = {
"InstructionRetrieval": "Retrieval w/Instructions",
"PairClassification": "Pair Classification",
"BitextMining": "Bitext Mining",
}
TASK_TO_METRIC = {k:v["metric"] for k,v in TASKS_CONFIG.items()}
def make_clickable_model(model_name, link=None):
if link is None:
link = "https://huggingface.co/" + model_name
# Remove user from model name
return (
f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>'
)
EXTERNAL_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_external", False)}
EXTERNAL_MODEL_TO_LINK = {k: v["link"] for k,v in MODEL_META["model_meta"].items() if v.get("link", False)}
EXTERNAL_MODEL_TO_DIM = {k: v["dim"] for k,v in MODEL_META["model_meta"].items() if v.get("dim", False)}
EXTERNAL_MODEL_TO_SEQLEN = {k: v["seq_len"] for k,v in MODEL_META["model_meta"].items() if v.get("seq_len", False)}
EXTERNAL_MODEL_TO_SIZE = {k: v["size"] for k,v in MODEL_META["model_meta"].items() if v.get("size", False)}
PROPRIETARY_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_proprietary", False)}
TASK_DESCRIPTIONS = {k: v["task_description"] for k,v in TASKS_CONFIG.items()}
TASK_DESCRIPTIONS["Overall"] = "Overall performance across MTEB tasks."
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_sentence_transformers_compatible", False)}
MODELS_TO_SKIP = MODEL_META["models_to_skip"]
CROSS_ENCODERS = MODEL_META["cross_encoders"]
BI_ENCODERS = [k for k, _ in MODEL_META["model_meta"].items() if k not in CROSS_ENCODERS + ["bm25"]]
PROPRIETARY_MODELS = {
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))
for model in PROPRIETARY_MODELS
}
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = {
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))
for model in SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS
}
CROSS_ENCODERS = {
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))
for model in CROSS_ENCODERS
}
BI_ENCODERS = {
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))
for model in BI_ENCODERS
}
TASK_TO_TASK_TYPE = {task_category: [] for task_category in TASKS}
for board_config in BOARDS_CONFIG.values():
for task_category, task_list in board_config["tasks"].items():
TASK_TO_TASK_TYPE[task_category].extend(task_list)
def add_lang(examples):
if not(examples["eval_language"]):
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"]
else:
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"] + f' ({examples["eval_language"]})'
return examples
def norm(names): return set([name.split(" ")[0] for name in names])
def add_task(examples):
# Could be added to the dataset loading script instead
task_name = examples["mteb_dataset_name"]
task_type = None
for task_category, task_list in TASK_TO_TASK_TYPE.items():
if task_name in norm(task_list):
task_type = task_category
break
if task_type is not None:
examples["mteb_task"] = task_type
else:
print("WARNING: Task not found for dataset", examples["mteb_dataset_name"])
examples["mteb_task"] = "Unknown"
return examples
if os.path.exists("EXTERNAL_MODEL_RESULTS.json"):
with open("EXTERNAL_MODEL_RESULTS.json") as f:
EXTERNAL_MODEL_RESULTS = json.load(f)
# Update with models not contained
models_to_run = []
for model in EXTERNAL_MODELS:
if model not in EXTERNAL_MODEL_RESULTS:
models_to_run.append(model)
EXTERNAL_MODEL_RESULTS[model] = {k: {v: []} for k, v in TASK_TO_METRIC.items()}
else:
EXTERNAL_MODEL_RESULTS = {model: {k: {v: []} for k, v in TASK_TO_METRIC.items()} for model in EXTERNAL_MODELS}
models_to_run = EXTERNAL_MODELS
pbar = tqdm(models_to_run, desc="Fetching external model results")
for model in pbar:
pbar.set_description(f"Fetching external model results for {model!r}")
ds = load_dataset(RESULTS_REPO, model, trust_remote_code=True)
# For local debugging:
#, download_mode='force_redownload', verification_mode="no_checks")
ds = ds.map(add_lang)
ds = ds.map(add_task)
base_dict = {"Model": make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))}
# For now only one metric per task - Could add more metrics lateron
for task, metric in TASK_TO_METRIC.items():
ds_dict = ds.filter(lambda x: (x["mteb_task"] == task) and (x["metric"] == metric))["test"].to_dict()
ds_dict = {k: round(v, 2) for k, v in zip(ds_dict["mteb_dataset_name_with_lang"], ds_dict["score"])}
EXTERNAL_MODEL_RESULTS[model][task][metric].append({**base_dict, **ds_dict})
# Save & cache EXTERNAL_MODEL_RESULTS
with open("EXTERNAL_MODEL_RESULTS.json", "w") as f:
json.dump(EXTERNAL_MODEL_RESULTS, f)
def get_dim_seq_size(model):
filenames = [sib.rfilename for sib in model.siblings]
dim, seq = "", ""
for filename in filenames:
if re.match("\d+_Pooling/config.json", filename):
st_config_path = hf_hub_download(model.modelId, filename=filename)
dim = json.load(open(st_config_path)).get("word_embedding_dimension", "")
break
for filename in filenames:
if re.match("\d+_Dense/config.json", filename):
st_config_path = hf_hub_download(model.modelId, filename=filename)
dim = json.load(open(st_config_path)).get("out_features", dim)
if "config.json" in filenames:
config_path = hf_hub_download(model.modelId, filename="config.json")
config = json.load(open(config_path))
if not dim:
dim = config.get("hidden_dim", config.get("hidden_size", config.get("d_model", "")))
seq = config.get("n_positions", config.get("max_position_embeddings", config.get("n_ctx", config.get("seq_length", ""))))
if dim == "" or seq == "":
raise Exception(f"Could not find dim or seq for model {model.modelId}")
# Get model file size without downloading. Parameters in million parameters and memory in GB
parameters, memory = get_model_parameters_memory(model)
return dim, seq, parameters, memory
def make_datasets_clickable(df):
"""Does not work"""
if "BornholmBitextMining" in df.columns:
link = "https://huggingface.co/datasets/strombergnlp/bornholmsk_parallel"
df = df.rename(
columns={f'BornholmBitextMining': '<a target="_blank" style="text-decoration: underline" href="{link}">BornholmBitextMining</a>',})
return df
def add_rank(df):
cols_to_rank = [col for col in df.columns if col not in ["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens"]]
if len(cols_to_rank) == 1:
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
else:
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
df.sort_values("Average", ascending=False, inplace=True)
df.insert(0, "Rank", list(range(1, len(df) + 1)))
df = df.round(2)
# Fill NaN after averaging
df.fillna("", inplace=True)
return df
model_infos_path = "model_infos.json"
MODEL_INFOS = {}
if os.path.exists(model_infos_path):
with open(model_infos_path) as f:
MODEL_INFOS = json.load(f)
def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_emb_dim=True, task_to_metric=TASK_TO_METRIC, rank=True, refresh=True):
global MODEL_INFOS
api = API
models = api.list_models(filter="mteb")
# Initialize list to models that we cannot fetch metadata from
df_list = []
for model in EXTERNAL_MODEL_RESULTS:
results_list = []
for task in tasks:
# Not all models have InstructionRetrieval, other new tasks
if task not in EXTERNAL_MODEL_RESULTS[model]:
continue
results_list += EXTERNAL_MODEL_RESULTS[model][task][task_to_metric[task]]
if len(datasets) > 0:
res = {k: v for d in results_list for k, v in d.items() if (k == "Model") or any([x in k for x in datasets])}
elif langs:
# Would be cleaner to rely on an extra language column instead
langs_format = [f"({lang})" for lang in langs]
res = {k: v for d in results_list for k, v in d.items() if any([k.split(" ")[-1] in (k, x) for x in langs_format])}
else:
res = {k: v for d in results_list for k, v in d.items()}
# Model & at least one result
if len(res) > 1:
if add_emb_dim:
res["Model Size (Million Parameters)"] = EXTERNAL_MODEL_TO_SIZE.get(model, "")
res["Memory Usage (GB, fp32)"] = round(res["Model Size (Million Parameters)"] * 1e6 * 4 / 1024**3, 2) if res["Model Size (Million Parameters)"] != "" else ""
res["Embedding Dimensions"] = EXTERNAL_MODEL_TO_DIM.get(model, "")
res["Max Tokens"] = EXTERNAL_MODEL_TO_SEQLEN.get(model, "")
df_list.append(res)
for model in models:
if model.modelId in MODELS_TO_SKIP: continue
print("MODEL", model.modelId)
if model.modelId not in MODEL_INFOS or refresh:
readme_path = hf_hub_download(model.modelId, filename="README.md")
meta = metadata_load(readme_path)
MODEL_INFOS[model.modelId] = {
"metadata": meta
}
meta = MODEL_INFOS[model.modelId]["metadata"]
if "model-index" not in meta:
continue
# meta['model-index'][0]["results"] is list of elements like:
# {
# "task": {"type": "Classification"},
# "dataset": {
# "type": "mteb/amazon_massive_intent",
# "name": "MTEB MassiveIntentClassification (nb)",
# "config": "nb",
# "split": "test",
# },
# "metrics": [
# {"type": "accuracy", "value": 39.81506388702084},
# {"type": "f1", "value": 38.809586587791664},
# ],
# },
# Use "get" instead of dict indexing to skip incompat metadata instead of erroring out
if len(datasets) > 0:
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and any([x in sub_res.get("dataset", {}).get("name", "") for x in datasets])]
elif langs:
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and (sub_res.get("dataset", {}).get("config", "default") in ("default", *langs))]
else:
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks)]
out = [{res["dataset"]["name"].replace("MTEB ", ""): [round(score["value"], 2) for score in res["metrics"] if score["type"] == task_to_metric.get(res["task"]["type"])][0]} for res in task_results]
out = {k: v for d in out for k, v in d.items()}
out["Model"] = make_clickable_model(model.modelId)
# Model & at least one result
if len(out) > 1:
if add_emb_dim:
# The except clause triggers on gated repos, we can use external metadata for those
try:
if "dim_seq_size" not in MODEL_INFOS[model.modelId] or refresh:
MODEL_INFOS[model.modelId]["dim_seq_size"] = list(get_dim_seq_size(model))
except:
name_without_org = model.modelId.split("/")[-1]
MODEL_INFOS[model.modelId]["dim_seq_size"] = (
EXTERNAL_MODEL_TO_DIM.get(name_without_org, ""),
EXTERNAL_MODEL_TO_SEQLEN.get(name_without_org, ""),
EXTERNAL_MODEL_TO_SIZE.get(name_without_org, ""),
round(EXTERNAL_MODEL_TO_SIZE[name_without_org] * 1e6 * 4 / 1024**3, 2) if name_without_org in EXTERNAL_MODEL_TO_SIZE else "",
)
out["Embedding Dimensions"], out["Max Tokens"], out["Model Size (Million Parameters)"], out["Memory Usage (GB, fp32)"] = tuple(MODEL_INFOS[model.modelId]["dim_seq_size"])
df_list.append(out)
if model.library_name == "sentence-transformers" or "sentence-transformers" in model.tags or "modules.json" in {file.rfilename for file in model.siblings}:
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS.add(out["Model"])
# Save & cache MODEL_INFOS
with open("model_infos.json", "w") as f:
json.dump(MODEL_INFOS, f)
df = pd.DataFrame(df_list)
# If there are any models that are the same, merge them
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
df = df.groupby("Model", as_index=False).first()
# Put 'Model' column first
cols = sorted(list(df.columns))
base_columns = ["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens"]
if len(datasets) > 0:
#filter invalid columns
cols = [col for col in cols if col in base_columns + datasets]
i = 0
for column in base_columns:
if column in cols:
cols.insert(i, cols.pop(cols.index(column)))
i += 1
df = df[cols]
if rank:
df = add_rank(df)
if fillna:
df.fillna("", inplace=True)
return df
# Get dict with a task list for each task category
# E.g. {"Classification": ["AmazonMassiveIntentClassification (en)", ...], "PairClassification": ["SprintDuplicateQuestions", ...]}
def get_mteb_average(task_dict: dict, refresh=True):
all_tasks = reduce(lambda x, y: x + y, task_dict.values())
DATA_OVERALL = get_mteb_data(
tasks=list(task_dict.keys()),
datasets=all_tasks,
fillna=False,
add_emb_dim=True,
rank=False,
refresh=refresh
)
# Debugging:
# DATA_OVERALL.to_csv("overall.csv")
DATA_OVERALL.insert(1, f"Average ({len(all_tasks)} datasets)", DATA_OVERALL[all_tasks].mean(axis=1, skipna=False))
for i, (task_category, task_category_list) in enumerate(task_dict.items()):
DATA_OVERALL.insert(i+2, f"{task_category} Average ({len(task_category_list)} datasets)", DATA_OVERALL[task_category_list].mean(axis=1, skipna=False))
DATA_OVERALL.sort_values(f"Average ({len(all_tasks)} datasets)", ascending=False, inplace=True)
# Start ranking from 1
DATA_OVERALL.insert(0, "Rank", list(range(1, len(DATA_OVERALL) + 1)))
DATA_OVERALL = DATA_OVERALL.round(2)
DATA_TASKS = {}
for task_category, task_category_list in task_dict.items():
DATA_TASKS[task_category] = add_rank(DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + task_category_list])
DATA_TASKS[task_category] = DATA_TASKS[task_category][DATA_TASKS[task_category].iloc[:, 4:].ne("").any(axis=1)]
# Fill NaN after averaging
DATA_OVERALL.fillna("", inplace=True)
data_overall_rows = ["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens", f"Average ({len(all_tasks)} datasets)"]
for task_category, task_category_list in task_dict.items():
data_overall_rows.append(f"{task_category} Average ({len(task_category_list)} datasets)")
DATA_OVERALL = DATA_OVERALL[data_overall_rows]
DATA_OVERALL = DATA_OVERALL[DATA_OVERALL.iloc[:, 5:].ne("").any(axis=1)]
return DATA_OVERALL, DATA_TASKS
boards_data = {}
all_data_tasks = []
for board, board_config in BOARDS_CONFIG.items():
boards_data[board] = {
"data_overall": None,
"data_tasks": {}
}
if board_config["has_overall"]:
data_overall, data_tasks = get_mteb_average(board_config["tasks"], refresh=False)
boards_data[board]["data_overall"] = data_overall
boards_data[board]["data_tasks"] = data_tasks
all_data_tasks.extend(data_tasks.values())
else:
for task_category, task_category_list in board_config["tasks"].items():
data_task_category = get_mteb_data(tasks=[task_category], datasets=task_category_list, refresh=False)
data_task_category.drop(columns=["Embedding Dimensions", "Max Tokens"], inplace=True)
boards_data[board]["data_tasks"][task_category] = data_task_category
all_data_tasks.append(data_task_category)
# Exact, add all non-nan integer values for every dataset
NUM_SCORES = 0
DATASETS = []
MODELS = []
# LANGUAGES = []
for d in all_data_tasks:
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum()
cols_to_ignore = 4 if "Average" in d.columns else 3
# Count number of scores including only non-nan floats & excluding the rank column
NUM_SCORES += d.iloc[:, cols_to_ignore:].notna().sum().sum()
# Exclude rank & model name column (first two); Do not count different language versions as different datasets
DATASETS += [i.split(" ")[0] for i in d.columns[cols_to_ignore:]]
# LANGUAGES += [i.split(" ")[-1] for i in d.columns[cols_to_ignore:]]
MODELS += d["Model"].tolist()
NUM_DATASETS = len(set(DATASETS))
# NUM_LANGUAGES = len(set(LANGUAGES))
NUM_MODELS = len(set(MODELS))
# 1. Force headers to wrap
# 2. Force model column (maximum) width
# 3. Prevent model column from overflowing, scroll instead
# 4. Prevent checkbox groups from taking up too much space
css = """
table > thead {
white-space: normal
}
table {
--cell-width-1: 250px
}
table > tbody > tr > td:nth-child(2) > div {
overflow-x: auto
}
.filter-checkbox-group {
max-width: max-content;
}
"""
"""
Each inner tab can have the following keys:
- language: The language of the leaderboard
- language_long: [optional] The long form of the language
- description: The description of the leaderboard
- credits: [optional] The credits for the leaderboard
- data: The data for the leaderboard
- refresh: The function to refresh the leaderboard
"""
def get_refresh_function(task_category, task_list):
def _refresh():
data_task_category = get_mteb_data(tasks=[task_category], datasets=task_list)
data_task_category.drop(columns=["Embedding Dimensions", "Max Tokens"], inplace=True)
return data_task_category
return _refresh
data = {
"Overall": {"metric": "Various, refer to task tabs", "data": []}
}
for task in TASKS:
data[task] = {"metric": TASKS_CONFIG[task]["metric_description"], "data": []}
for board, board_config in BOARDS_CONFIG.items():
init_name = board_config["title"]
if init_name in PRETTY_NAMES:
init_name = PRETTY_NAMES[init_name]
board_pretty_name = f"{init_name} leaderboard"
acronym = board_config.get("acronym", None)
board_icon = board_config.get("icon", None)
if board_icon is None:
board_icon = ""
credits = board_config.get("credits", None)
if board_config["has_overall"]:
overall_pretty_name = board_pretty_name
if acronym is not None:
overall_pretty_name += f" ({board_config['acronym']})"
data["Overall"]["data"].append({
"language": board_config["title"],
"language_long": board_config["language_long"],
"description": f"**Overall MTEB {overall_pretty_name}** 🔮{board_icon}",
"data": boards_data[board]["data_overall"],
"refresh": lambda: get_mteb_average(board_config["tasks"])[0],#partial(get_mteb_average, board_config["tasks"]),
"credits": credits,
})
for task_category, task_category_list in board_config["tasks"].items():
task_icon = TASKS_CONFIG[task_category]['icon']
if "special_icons" in board_config and isinstance(board_config["special_icons"], dict):
task_icon = board_config["special_icons"].get(task_category, task_icon)
data[task_category]["data"].append({
"language": board_config["title"],
"language_long": board_config["language_long"],
"description": f"**{task_category} {board_pretty_name}** {task_icon}{board_icon}",
"data": boards_data[board]["data_tasks"][task_category],
"refresh": get_refresh_function(task_category, task_category_list),
"credits": credits,
})
dataframes = []
full_dataframes = []
tabs = []
# The following JavaScript function updates the URL parameters based on the selected task and language
# Additionally, `update_url_task` and `update_url_language` are used to update the current task and language
# The current task and language are stored in the `current_task_language` and `language_per_task` JSON objects
# This is all a bit hacky, but it might be the only way to pass options to a JavaScript function via Gradio
set_window_url_params = """
function(goalUrlObject) {
const params = new URLSearchParams(window.location.search);
for (const [key, value] of Object.entries(goalUrlObject)) {
params.set(key, value);
};
const queryString = '?' + params.toString();
console.log(queryString);
window.history.replaceState({}, '', queryString);
return [];
}
"""
def update_url_task(event: gr.SelectData, current_task_language: dict, language_per_task: dict):
current_task_language["task"] = event.target.id
# Either use the cached language for this task or the 1st language
try:
current_task_language["language"] = language_per_task.get(event.target.id, event.target.children[1].children[0].id)
except Exception as e: # is Overall tab, no description
current_task_language["language"] = language_per_task.get(event.target.id, event.target.children[0].children[0].id)
return current_task_language, language_per_task
def update_url_language(event: gr.SelectData, current_task_language: dict, language_per_task: dict):
current_task_language["language"] = event.target.id
if "task" not in current_task_language:
current_task_language["task"] = "overall"
language_per_task[current_task_language["task"]] = event.target.id
return current_task_language, language_per_task
NUMERIC_INTERVALS = {
"<100M": pd.Interval(0, 100, closed="right"),
"100M to 250M": pd.Interval(100, 250, closed="right"),
"250M to 500M": pd.Interval(250, 500, closed="right"),
"500M to 1B": pd.Interval(500, 1000, closed="right"),
">1B": pd.Interval(1000, 1_000_000, closed="right"),
}
MODEL_TYPES = [
"Open",
"Proprietary",
"Sentence Transformers",
"Cross-Encoders",
"Bi-Encoders"
]
def filter_data(search_query, model_types, model_sizes, *full_dataframes):
output_dataframes = []
for df in full_dataframes:
# Apply the search query
if search_query:
names = df["Model"].map(lambda x: re.match("<a .+?>(.+)</a>", x).group(1))
masks = []
for query in search_query.split(";"):
masks.append(names.str.contains(query))
df = df[reduce(lambda a, b: a | b, masks)]
# Apply the model type filtering
if set(model_types) != set(MODEL_TYPES):
masks = []
for model_type in model_types:
if model_type == "Open":
masks.append(~df["Model"].isin(PROPRIETARY_MODELS))
elif model_type == "Proprietary":
masks.append(df["Model"].isin(PROPRIETARY_MODELS))
elif model_type == "Sentence Transformers":
masks.append(df["Model"].isin(SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS))
elif model_type == "Cross-Encoders":
masks.append(df["Model"].isin(CROSS_ENCODERS))
elif model_type == "Bi-Encoders":
masks.append(df["Model"].isin(BI_ENCODERS))
if masks:
df = df[reduce(lambda a, b: a | b, masks)]
else:
df = pd.DataFrame(columns=df.columns)
# Apply the model size filtering
if set(model_sizes) != set(NUMERIC_INTERVALS.keys()):
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[model_size] for model_size in model_sizes]))
sizes = df["Model Size (Million Parameters)"].replace('', 0)
mask = sizes.apply(lambda size: any(numeric_interval.contains(size)))
df = df[mask]
output_dataframes.append(df)
return output_dataframes
with gr.Blocks(css=css) as block:
# Store the current task and language for updating the URL. This is a bit hacky, but it works
# for passing the current task and language to the JavaScript function via Gradio
current_task_language = gr.JSON(value=dict(), visible=False)
language_per_task = gr.JSON(value=dict(), visible=False)
gr.Markdown(f"""
Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the <a href="https://github.com/embeddings-benchmark/mteb/blob/main/docs/adding_a_model.md" target="_blank" style="text-decoration: underline">MTEB GitHub repository</a> 🤗 Refer to the [MTEB paper](https://arxiv.org/abs/2210.07316) for details on metrics, tasks and models.
""")
with gr.Row():
search_bar = gr.Textbox(
label="Search Bar (separate multiple queries with `;`)",
placeholder=" 🔍 Search for a model and press enter...",
)
filter_model_type = gr.CheckboxGroup(
label="Model types",
choices=MODEL_TYPES,
value=MODEL_TYPES,
interactive=True,
elem_classes=["filter-checkbox-group"]
)
filter_model_sizes = gr.CheckboxGroup(
label="Model sizes (in number of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_classes=["filter-checkbox-group"],
scale=2,
)
with gr.Tabs() as outer_tabs:
# Store the tabs for updating them on load based on URL parameters
tabs.append(outer_tabs)
for task, task_values in data.items():
metric = task_values["metric"]
task_tab_id = task.lower().replace(" ", "-")
# Overall, Bitext Mining, Classification, etc.
pretty_task_name = task if task not in PRETTY_NAMES.keys() else PRETTY_NAMES[task]
with gr.Tab(pretty_task_name, id=task_tab_id) as task_tab:
# For updating the 'task' in the URL
task_tab.select(update_url_task, [current_task_language, language_per_task], [current_task_language, language_per_task]).then(None, [current_task_language], [], js=set_window_url_params)
if "Overall" != task:
gr.Markdown(TASK_DESCRIPTIONS[task])
with gr.Tabs() as task_tabs:
# Store the task tabs for updating them on load based on URL parameters
tabs.append(task_tabs)
for item in task_values["data"]:
item_tab_id = item["language"].lower().replace(" ", "-")
# English, Chinese, French, etc.
with gr.Tab(item["language"], id=item_tab_id) as item_tab:
# For updating the 'language' in the URL
item_tab.select(update_url_language, [current_task_language, language_per_task], [current_task_language, language_per_task], trigger_mode="always_last").then(None, [current_task_language], [], js=set_window_url_params)
with gr.Row():
gr.Markdown(f"""
{item['description']}
- **Metric:** {metric}
- **Languages:** {item['language_long'] if 'language_long' in item else item['language']}
{"- **Credits:** " + item['credits'] if ("credits" in item and item["credits"] is not None) else ''}
""")
with gr.Row():
datatype = ["number", "markdown"] + ["number"] * len(item["data"])
dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", height=500)
dataframes.append(dataframe)
full_dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", visible=False)
full_dataframes.append(full_dataframe)
with gr.Row():
refresh_button = gr.Button("Refresh")
refresh_button.click(item["refresh"], inputs=None, outputs=dataframe, concurrency_limit=20)
gr.Markdown(f"""
- **Total Datasets**: {NUM_DATASETS}
- **Total Languages**: 113
- **Total Scores**: {NUM_SCORES}
- **Total Models**: {NUM_MODELS}
""" + r"""
Made with ❤️ for NLP. If this work is useful to you, please consider citing:
```bibtex
@article{muennighoff2022mteb,
doi = {10.48550/ARXIV.2210.07316},
url = {https://arxiv.org/abs/2210.07316},
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
}
```
""")
def set_tabs_on_load(request: gr.Request):
"""Set the selected tab based on the URL parameters on load."""
global tabs
valid_task_keys = [child.id for child in tabs[0].children]
return_tabs = [gr.Tabs()] * len(tabs)
query_params = request.request.query_params
task_key = query_params.get("task", "overall")
if task_key not in valid_task_keys:
task_key = "overall"
return_tabs[0] = gr.Tabs(selected=task_key)
tabs_idx = valid_task_keys.index(task_key) + 1
language_key = query_params.get("language", "english")
return_tabs[tabs_idx] = gr.Tabs(selected=language_key)
current_task_language = {"task": task_key, "language": language_key}
language_per_task = {task_key: language_key}
return return_tabs + [current_task_language, language_per_task]
block.load(set_tabs_on_load, inputs=[], outputs=tabs + [current_task_language, language_per_task])
search_bar.submit(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes)
filter_model_type.change(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes)
filter_model_sizes.change(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes)
block.queue(max_size=10)
block.launch()
# Possible changes:
# Could add graphs / other visual content
# Could add verification marks
# Sources:
# https://huggingface.co/spaces/gradio/leaderboard
# https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard
# https://getemoji.com/