import gradio as gr import requests import pandas as pd from huggingface_hub.hf_api import SpaceInfo from huggingface_hub import HfApi, hf_hub_download from huggingface_hub.repocard import metadata_load path = f"https://huggingface.co/api/spaces" def get_blocks_party_spaces(): r = requests.get(path) d = r.json() spaces = [SpaceInfo(**x) for x in d] blocks_spaces = {} for i in range(0,len(spaces)): if spaces[i].id.split('/')[0] == 'Gradio-Blocks' and hasattr(spaces[i], 'likes') and spaces[i].id != 'Gradio-Blocks/Leaderboard' and spaces[i].id != 'Gradio-Blocks/README': blocks_spaces[spaces[i].id]=spaces[i].likes df = pd.DataFrame( [{"Spaces_Name": Spaces, "likes": likes} for Spaces,likes in blocks_spaces.items()]) df = df.sort_values(by=['likes'],ascending=False) return df def make_clickable_model(model_name): # remove user from model name model_name_show = ' '.join(model_name.split('/')[1:]) link = "https://huggingface.co/" + model_name return f'{model_name_show}' def get_mteb_data(task="Clustering", metric="v_measure"): api = HfApi() models = api.list_models(filter="mteb") df_list = [] for model in models: readme_path = hf_hub_download(model.modelId, filename="README.md") meta = metadata_load(readme_path) out = list( map( lambda x: {x["dataset"]["name"].replace("MTEB ", ""): round(list(filter(lambda x: x["type"] == metric, x["metrics"]))[0]["value"], 2)}, filter(lambda x: x["task"]["type"] == task, meta["model-index"][0]["results"]) ) ) out = {k: v for d in out for k, v in d.items()} # Does not work https://github.com/gradio-app/gradio/issues/2375 # Turning it into HTML will make the formatting ugly # make_clickable_model(model.modelId) out["Model"] = model.modelId df_list.append(out) df = pd.DataFrame(df_list) # Put Model in the beginning & sort the others df = df[[df.columns[-1]] + sorted(df.columns[:-1])] return df block = gr.Blocks() with block: gr.Markdown("""Leaderboard for XX most popular Blocks Event Spaces. To learn more and join, see Blocks Party Event""") with gr.Tabs(): with gr.TabItem("Blocks Party Leaderboard"): with gr.Row(): data = gr.components.Dataframe(type="pandas") with gr.Row(): data_run = gr.Button("Refresh") data_run.click(get_blocks_party_spaces, inputs=None, outputs=data) with gr.TabItem("Clustering"): with gr.Row(): gr.Markdown("""Leaderboard for Clustering""") with gr.Row(): data_clustering = gr.components.Dataframe(type="pandas") with gr.Row(): data_run = gr.Button("Refresh") task = gr.Variable(value="Clustering") metric = gr.Variable(value="v_measure") data_run.click(get_mteb_data, inputs=[task, metric], outputs=data_clustering) with gr.TabItem("Blocks Party Leaderboard2"): with gr.Row(): data = gr.components.Dataframe(type="pandas") with gr.Row(): data_run = gr.Button("Refresh") data_run.click(get_blocks_party_spaces, inputs=None, outputs=data) # running the function on page load in addition to when the button is clicked block.load(get_mteb_data, inputs=[task, metric], outputs=data_clustering) block.load(get_blocks_party_spaces, inputs=None, outputs=data) block.launch()