File size: 6,856 Bytes
7064043
8d2001a
ae4b7d0
9724d68
509eeda
8ce7fdb
c0ff040
8ce7fdb
8d2001a
4a23dca
 
7064043
 
 
b3bc788
4308b33
7064043
4916c5e
 
7064043
f6894df
84d1725
7064043
 
 
 
 
63ce649
85cb9b5
f6894df
509eeda
cf58581
8ce7fdb
8d2001a
 
 
8ce7fdb
7064043
 
8ce7fdb
86f6646
95eab87
7064043
95a9f65
7064043
6fc3067
95a9f65
40fe7c0
fc8689b
f9127d3
831716d
63ce649
95eab87
7064043
 
 
 
 
 
 
 
 
c97a584
7064043
9d7c1dd
40fe7c0
 
190fc64
 
 
e399130
40fe7c0
695d1b1
7064043
d408c45
7064043
 
2938c1f
7064043
 
831716d
ae4b7d0
7064043
 
 
 
 
 
 
 
cae39fd
 
63ce649
7064043
 
63ce649
cae39fd
 
63ce649
7064043
71f8de2
3b4ac51
7064043
 
8f01d6b
6fc3067
7064043
 
 
 
 
 
 
f50a5fd
7064043
 
 
 
 
 
 
 
 
 
 
40fe7c0
8d2001a
7064043
 
4916c5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554ca8f
 
 
4916c5e
 
cb73941
899baa8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# Dependencies, see also requirement.txt ;)
import gradio as gr
import cv2 
import numpy as np
import os

from scenedetect import open_video, SceneManager
from scenedetect.detectors import ContentDetector

from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip

# —————————————————————————————————————————————————

title = "Scene Edit Detection"
description = "<p style='text-align: center'>Gradio demo of PySceneDetect. <br />Automatically find every shots in a video sequence</p><p style='text-align: center'> 1. gives you timecode in/out for each shot. 2. saves each shot as a splitted mp4 video chunk for you to download. 3. diplays a thumbnail for each shot as a gallery output.<br /> <img id='visitor-badge' alt='visitor badge' src='https://visitor-badge.glitch.me/badge?page_id=gradio-blocks.scene-edit-detection' style='display: inline-block'/></b></p>"
article = "<p style='text-align: center'><a href='http://scenedetect.com/en/latest/' target='_blank'>PySceneDetect website</a> | <a href='https://github.com/Breakthrough/PySceneDetect' target='_blank'>Github Repo</a></p>"

# —————————————————————————————————————————————————

# SET INPUTS
video_input = gr.Video(source="upload", format="mp4", label="Video Sequence", mirror_webcam=False)
threshold = gr.Slider(label="Threshold pixel comparison: if exceeded, triggers a scene cut. Default: 27.0", minimum=15.0, maximum=40.0, value=27.0)

# —————————————————————————————————————————————————

def convert_to_tuple(list):
    return tuple(list);


def find_scenes(video_path, threshold):
    # file name without extension
    filename = os.path.splitext(os.path.basename(video_path))[0]
    # Open our video, create a scene manager, and add a detector.
    video = open_video(video_path)
    scene_manager = SceneManager()
    scene_manager.add_detector(
        ContentDetector(threshold=threshold))
    
    # Start detection 
    scene_manager.detect_scenes(video, show_progress=True)
    scene_list = scene_manager.get_scene_list()
    
    # Push the list of scenes into data_outputs
    data_outputs.append(scene_list)
    gradio_components_outputs.append("json")
    #print(scene_list)
    
    timecodes = []
    timecodes.append({"title": filename + ".mp4", "fps": scene_list[0][0].get_framerate()})
    
    shots = []
    stills = []
    
    # For each shot found, set entry and exit points as seconds from frame number
    # Then split video into chunks and store them into shots List
    # Then extract first frame of each shot as thumbnail for the gallery
    for i, shot in enumerate(scene_list):
        
        # STEP 1
        # Get timecode in seconds
        framerate = shot[0].get_framerate()
        shot_in = shot[0].get_frames() / framerate
        shot_out = shot[1].get_frames() / framerate
        
        tc_in = shot[0].get_timecode()
        tc_out = shot[1].get_timecode()
        
        frame_in = shot[0].get_frames()
        frame_out = shot[1].get_frames()
        
        timecode = {"tc_in": tc_in, "tc_out": tc_out, "frame_in": frame_in, "frame_out": frame_out}
        timecodes.append(timecode)
        
        # Set name template for each shot
        target_name = "shot_" + str(i+1) + "_" + str(filename) + ".mp4"
        
        # Split chunk
        ffmpeg_extract_subclip(video_path, shot_in, shot_out, targetname=target_name)
        
        # Push chunk into shots List
        shots.append(target_name)
        
        # Push each chunk into data_outputs
        data_outputs.append(target_name)
        gradio_components_outputs.append("video")
        
        # —————————————————————————————————————————————————
        
        # STEP 2
        # extract first frame of each shot with cv2
        vid = cv2.VideoCapture(video_path)
        fps = vid.get(cv2.CAP_PROP_FPS)
        print('frames per second =',fps)
        
        frame_id = shot[0].get_frames() # value from scene_list from step 1

        vid.set(cv2.CAP_PROP_POS_FRAMES, frame_id)
        ret, frame = vid.read()

        # Save frame as PNG file
        img = str(frame_id) + '_screenshot.png'
        cv2.imwrite(img,frame)
        
        # Push image into stills List
        stills.append((img, 'shot ' + str(i+1)))
    
    # Push the list of video shots into data_outputs for Gradio file component
    data_outputs.append(shots)
    gradio_components_outputs.append("file")
        
    # Push the list of still images into data_outputs
    data_outputs.append(stills)
    gradio_components_outputs.append("gallery")
    
    # This would have been used as gradio outputs, 
    # if we could set number of outputs after the interface launch
    # That's not (yet ?) possible
    results = convert_to_tuple(data_outputs)    
    print(results)
 
    # return List of shots as JSON, List of video chunks, List of still images  
    # *
    # Would be nice to be able to return my results tuple as outputs, 
    # while number of chunks found is not fixed:
    # return results 
    return timecodes, shots, stills

# —————————————————————————————————————————————————

# SET DATA AND COMPONENTS OUTPUTS

# This would be filled like this:
# data_outputs = [ [List from detection], "video_chunk_n0.mp4", "video_chunk_n1.mp4", ... , "video_chunk_n.mp4", [List of video filepath to download], [List of still images from each shot found] ]
data_outputs = []

# This would be filled like this:
# gradio_components_outputs = [ "json", "video", "video", ... , "video", "file", "gallery" ]
gradio_components_outputs = []


#SET OUTPUTS

# This would be nice if number of outputs could be set after Interface Launch: 
# because we do not know how many shots will be detected         
# gradio_components_outputs = [ "json", "video", "video", ... , "video", "file", "gallery" ]
# outputs = gradio_components_outputs

# ANOTHER SOLUTION WOULD BE USING A (FUTURE ?) "VIDEO GALLERY" GRADIO COMPONENT FROM LIST :)

outputs = [gr.JSON(label="Shots detected"), gr.File(label="Downloadable Shots"), gr.Gallery(label="Still Images from each shot").style(grid=3)]

# —————————————————————————————————————————————————
print('Hello Sylvain')
gr.Interface(fn=find_scenes, inputs=[video_input, threshold], outputs=outputs, title=title, description=description, article=article).launch()