File size: 6,417 Bytes
7064043
8d2001a
ae4b7d0
9724d68
509eeda
8ce7fdb
c0ff040
8ce7fdb
8d2001a
4a23dca
 
7064043
 
 
63ce649
85cb9b5
86fd5b0
 
 
 
f6894df
509eeda
cf58581
8ce7fdb
8d2001a
 
 
8ce7fdb
7064043
 
8ce7fdb
86f6646
95eab87
7064043
95a9f65
7064043
6fc3067
95a9f65
40fe7c0
86fd5b0
 
fc8689b
f9127d3
831716d
63ce649
95eab87
7064043
 
 
 
 
 
 
 
 
c97a584
7064043
9d7c1dd
40fe7c0
 
190fc64
 
 
e399130
40fe7c0
695d1b1
7064043
d408c45
7064043
 
2938c1f
7064043
 
831716d
ae4b7d0
7064043
 
 
 
 
 
 
 
cae39fd
 
63ce649
7064043
 
63ce649
cae39fd
 
63ce649
7064043
71f8de2
3b4ac51
7064043
 
8f01d6b
6fc3067
7064043
 
 
 
 
 
 
f50a5fd
7064043
 
 
 
 
 
 
 
 
 
 
40fe7c0
8d2001a
86fd5b0
7064043
 
4916c5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554ca8f
 
4916c5e
86fd5b0
ef765c5
86fd5b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
422565d
86fd5b0
 
fc541da
86fd5b0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Dependencies, see also requirement.txt ;)
import gradio as gr
import cv2 
import numpy as np
import os

from scenedetect import open_video, SceneManager
from scenedetect.detectors import ContentDetector

from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip


def convert_to_tuple(list):
    return tuple(list);


def clear_app():
    return None, 27, None, None, None


def find_scenes(video_path, threshold):
    # file name without extension
    filename = os.path.splitext(os.path.basename(video_path))[0]
    # Open our video, create a scene manager, and add a detector.
    video = open_video(video_path)
    scene_manager = SceneManager()
    scene_manager.add_detector(
        ContentDetector(threshold=threshold))
    
    # Start detection 
    scene_manager.detect_scenes(video, show_progress=True)
    scene_list = scene_manager.get_scene_list()
    
    # Push the list of scenes into data_outputs
    data_outputs.append(scene_list)
    gradio_components_outputs.append("json")
    #print(scene_list)
    
    timecodes = []
    if not scene_list:
        raise ValueError("There are no scenes detected in this video.")
    timecodes.append({"title": filename + ".mp4", "fps": scene_list[0][0].get_framerate()})
    
    shots = []
    stills = []
    
    # For each shot found, set entry and exit points as seconds from frame number
    # Then split video into chunks and store them into shots List
    # Then extract first frame of each shot as thumbnail for the gallery
    for i, shot in enumerate(scene_list):
        
        # STEP 1
        # Get timecode in seconds
        framerate = shot[0].get_framerate()
        shot_in = shot[0].get_frames() / framerate
        shot_out = shot[1].get_frames() / framerate
        
        tc_in = shot[0].get_timecode()
        tc_out = shot[1].get_timecode()
        
        frame_in = shot[0].get_frames()
        frame_out = shot[1].get_frames()
        
        timecode = {"tc_in": tc_in, "tc_out": tc_out, "frame_in": frame_in, "frame_out": frame_out}
        timecodes.append(timecode)
        
        # Set name template for each shot
        target_name = "shot_" + str(i+1) + "_" + str(filename) + ".mp4"
        
        # Split chunk
        ffmpeg_extract_subclip(video_path, shot_in, shot_out, targetname=target_name)
        
        # Push chunk into shots List
        shots.append(target_name)
        
        # Push each chunk into data_outputs
        data_outputs.append(target_name)
        gradio_components_outputs.append("video")
        
        # —————————————————————————————————————————————————
        
        # STEP 2
        # extract first frame of each shot with cv2
        vid = cv2.VideoCapture(video_path)
        fps = vid.get(cv2.CAP_PROP_FPS)
        print('frames per second =',fps)
        
        frame_id = shot[0].get_frames() # value from scene_list from step 1

        vid.set(cv2.CAP_PROP_POS_FRAMES, frame_id)
        ret, frame = vid.read()

        # Save frame as PNG file
        img = str(frame_id) + '_screenshot.png'
        cv2.imwrite(img,frame)
        
        # Push image into stills List
        stills.append((img, 'shot ' + str(i+1)))
    
    # Push the list of video shots into data_outputs for Gradio file component
    data_outputs.append(shots)
    gradio_components_outputs.append("file")
        
    # Push the list of still images into data_outputs
    data_outputs.append(stills)
    gradio_components_outputs.append("gallery")
    
    # This would have been used as gradio outputs, 
    # if we could set number of outputs after the interface launch
    # That's not (yet ?) possible
    results = convert_to_tuple(data_outputs)    
    print(results)
 
    # return List of shots as JSON, List of video chunks, List of still images  
    # *
    # Would be nice to be able to return my results tuple as outputs, 
    # while number of chunks found is not fixed:
    # return results 
    return timecodes, shots, stills


# —————————————————————————————————————————————————

# SET DATA AND COMPONENTS OUTPUTS

# This would be filled like this:
# data_outputs = [ [List from detection], "video_chunk_n0.mp4", "video_chunk_n1.mp4", ... , "video_chunk_n.mp4", [List of video filepath to download], [List of still images from each shot found] ]
data_outputs = []

# This would be filled like this:
# gradio_components_outputs = [ "json", "video", "video", ... , "video", "file", "gallery" ]
gradio_components_outputs = []


#SET OUTPUTS

# This would be nice if number of outputs could be set after Interface Launch: 
# because we do not know how many shots will be detected         
# gradio_components_outputs = [ "json", "video", "video", ... , "video", "file", "gallery" ]
# outputs = gradio_components_outputs

# ANOTHER SOLUTION WOULD BE USING A (FUTURE ?) "VIDEO GALLERY" GRADIO COMPONENT FROM LIST :)



with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("""
            # Scene Edit Detection
            Copy of @fffiloni's gradio demo of PySceneDetect.
            Automatically find all the shots in a video sequence.
            """)
        with gr.Row():
            with gr.Column():
                video_input = gr.Video(sources="upload", format="mp4", label="Video Sequence", mirror_webcam = False)
                threshold = gr.Slider(label="Threshold pixel comparison: if exceeded, triggers a scene cut. Default: 27.0", minimum=15.0, maximum=40.0, value=27.0)
                with gr.Row():
                    clear_button = gr.Button(value=("Clear"))
                    run_button = gr.Button(value = "Submit", variant = "primary")
                    

            with gr.Column():
                json_output = gr.JSON(label="Shots detected")
                file_output = gr.File(label="Downloadable Shots")
                gallery_output = gr.Gallery(label="Still Images from each shot", columns = 3)

        run_button.click(fn=find_scenes, inputs=[video_input, threshold], outputs=[json_output, file_output, gallery_output])
        clear_button.click(fn=clear_app, inputs = None, outputs=[video_input, threshold, json_output, file_output, gallery_output])
if __name__ == "__main__":
    demo.launch(debug=True)