fffiloni's picture
Update app.py
d408c45
raw
history blame
6.86 kB
# Dependencies, see also requirement.txt ;)
import gradio as gr
import cv2
import numpy as np
import os
from scenedetect import open_video, SceneManager
from scenedetect.detectors import ContentDetector
from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip
# —————————————————————————————————————————————————
title = "Scene Edit Detection"
description = "<p style='text-align: center'>Gradio demo of PySceneDetect. <br />Automatically find every shots in a video sequence</p><p style='text-align: center'> 1. gives you timecode in/out for each shot. 2. saves each shot as a splitted mp4 video chunk for you to download. 3. diplays a thumbnail for each shot as a gallery output.<br /> <img id='visitor-badge' alt='visitor badge' src='https://visitor-badge.glitch.me/badge?page_id=gradio-blocks.scene-edit-detection' style='display: inline-block'/></b></p>"
article = "<p style='text-align: center'><a href='http://scenedetect.com/en/latest/' target='_blank'>PySceneDetect website</a> | <a href='https://github.com/Breakthrough/PySceneDetect' target='_blank'>Github Repo</a></p>"
# —————————————————————————————————————————————————
# SET INPUTS
video_input = gr.Video(source="upload", format="mp4", label="Video Sequence", mirror_webcam=False)
threshold = gr.Slider(label="Threshold pixel comparison: if exceeded, triggers a scene cut. Default: 27.0", minimum=15.0, maximum=40.0, value=27.0)
# —————————————————————————————————————————————————
def convert_to_tuple(list):
return tuple(list);
def find_scenes(video_path, threshold):
# file name without extension
filename = os.path.splitext(os.path.basename(video_path))[0]
# Open our video, create a scene manager, and add a detector.
video = open_video(video_path)
scene_manager = SceneManager()
scene_manager.add_detector(
ContentDetector(threshold=threshold))
# Start detection
scene_manager.detect_scenes(video, show_progress=True)
scene_list = scene_manager.get_scene_list()
# Push the list of scenes into data_outputs
data_outputs.append(scene_list)
gradio_components_outputs.append("json")
#print(scene_list)
timecodes = []
timecodes.append({"title": filename + ".mp4", "fps": scene_list[0][0].get_framerate()})
shots = []
stills = []
# For each shot found, set entry and exit points as seconds from frame number
# Then split video into chunks and store them into shots List
# Then extract first frame of each shot as thumbnail for the gallery
for i, shot in enumerate(scene_list):
# STEP 1
# Get timecode in seconds
framerate = shot[0].get_framerate()
shot_in = shot[0].get_frames() / framerate
shot_out = shot[1].get_frames() / framerate
tc_in = shot[0].get_timecode()
tc_out = shot[1].get_timecode()
frame_in = shot[0].get_frames()
frame_out = shot[1].get_frames()
timecode = {"tc_in": tc_in, "tc_out": tc_out, "frame_in": frame_in, "frame_out": frame_out}
timecodes.append(timecode)
# Set name template for each shot
target_name = "shot_" + str(i+1) + "_" + str(filename) + ".mp4"
# Split chunk
ffmpeg_extract_subclip(video_path, shot_in, shot_out, targetname=target_name)
# Push chunk into shots List
shots.append(target_name)
# Push each chunk into data_outputs
data_outputs.append(target_name)
gradio_components_outputs.append("video")
# —————————————————————————————————————————————————
# STEP 2
# extract first frame of each shot with cv2
vid = cv2.VideoCapture(video_path)
fps = vid.get(cv2.CAP_PROP_FPS)
print('frames per second =',fps)
frame_id = shot[0].get_frames() # value from scene_list from step 1
vid.set(cv2.CAP_PROP_POS_FRAMES, frame_id)
ret, frame = vid.read()
# Save frame as PNG file
img = (str(frame_id) + '_screenshot.png', 'shot ' + str(frame_id))
cv2.imwrite(img,frame)
# Push image into stills List
stills.append(img)
# Push the list of video shots into data_outputs for Gradio file component
data_outputs.append(shots)
gradio_components_outputs.append("file")
# Push the list of still images into data_outputs
data_outputs.append(stills)
gradio_components_outputs.append("gallery")
# This would have been used as gradio outputs,
# if we could set number of outputs after the interface launch
# That's not (yet ?) possible
results = convert_to_tuple(data_outputs)
print(results)
# return List of shots as JSON, List of video chunks, List of still images
# *
# Would be nice to be able to return my results tuple as outputs,
# while number of chunks found is not fixed:
# return results
return timecodes, shots, stills
# —————————————————————————————————————————————————
# SET DATA AND COMPONENTS OUTPUTS
# This would be filled like this:
# data_outputs = [ [List from detection], "video_chunk_n0.mp4", "video_chunk_n1.mp4", ... , "video_chunk_n.mp4", [List of video filepath to download], [List of still images from each shot found] ]
data_outputs = []
# This would be filled like this:
# gradio_components_outputs = [ "json", "video", "video", ... , "video", "file", "gallery" ]
gradio_components_outputs = []
#SET OUTPUTS
# This would be nice if number of outputs could be set after Interface Launch:
# because we do not know how many shots will be detected
# gradio_components_outputs = [ "json", "video", "video", ... , "video", "file", "gallery" ]
# outputs = gradio_components_outputs
# ANOTHER SOLUTION WOULD BE USING A (FUTURE ?) "VIDEO GALLERY" GRADIO COMPONENT FROM LIST :)
outputs = [gr.JSON(label="Shots detected"), gr.File(label="Downloadable Shots"), gr.Gallery(label="Still Images from each shot").style(grid=3)]
# —————————————————————————————————————————————————
print('Hello Sylvain')
gr.Interface(fn=find_scenes, inputs=[video_input, threshold], outputs=outputs, title=title, description=description, article=article).launch()