import gradio as gr import cv2 import numpy as np from scenedetect import open_video, SceneManager from scenedetect.detectors import ContentDetector #from scenedetect.video_splitter import split_video_ffmpeg from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip outputs = ["json", "file"] data_outputs = [] def fn(list): return tuple(list); def find_scenes(video_path, threshold=27.0): # Open our video, create a scene manager, and add a detector. video = open_video(video_path) scene_manager = SceneManager() scene_manager.add_detector( ContentDetector(threshold=threshold)) scene_manager.detect_scenes(video, show_progress=True) scene_list = scene_manager.get_scene_list() #outputs.append("json") data_outputs.append(scene_list) #print(scene_list) shots = [] stills = [] for i, scene in enumerate(scene_list): shot_in = scene[0].get_frames() / scene[0].get_framerate() shot_out = (scene[1].get_frames() - 1) / scene[0].get_framerate() target_name = str(i)+"_cut.mp4" ffmpeg_extract_subclip(video_path, shot_in, shot_out, targetname=target_name) data_outputs.append(target_name) shots.append(target_name) video = cv2.VideoCapture(video_path) fps = video.get(cv2.CAP_PROP_FPS) print('frames per second =',fps) frame_id = scene[0].get_frames() video.set(cv2.CAP_PROP_POS_FRAMES, frame_id) ret, frame = video.read() # Display and save frame #cv2.imshow('frame', frame); cv2.waitKey(0) img = cv2.imwrite(str(frame_id) + '_screenshot.png',frame) stills.append(img) #outputs.append("video") #shot_in = scene_list[1][0].get_frames() / scene_list[1][0].get_framerate() #shot_out = (scene_list[1][1].get_frames() - 1) / scene_list[1][0].get_framerate() #print(shot_in, shot_out) results = fn(data_outputs) print(results) print(stills) #ffmpeg_extract_subclip(video_path, shot_in, shot_out, targetname="cut.mp4") return scene_list, shots video_input=gr.Video(source="upload", format="mp4"); gr.Interface(fn=find_scenes, inputs=video_input, outputs=outputs).launch()