muellerzr's picture
muellerzr HF staff
& W&B
89af869
<!DOCTYPE html>
<html lang="en"><head>
<script src="Accelerate_files/libs/clipboard/clipboard.min.js"></script>
<script src="Accelerate_files/libs/quarto-html/tabby.min.js"></script>
<script src="Accelerate_files/libs/quarto-html/popper.min.js"></script>
<script src="Accelerate_files/libs/quarto-html/tippy.umd.min.js"></script>
<link href="Accelerate_files/libs/quarto-html/tippy.css" rel="stylesheet">
<link href="Accelerate_files/libs/quarto-html/quarto-html.min.css" rel="stylesheet" data-mode="light">
<link href="Accelerate_files/libs/quarto-html/quarto-syntax-highlighting-dark.css" rel="stylesheet" id="quarto-text-highlighting-styles"><meta charset="utf-8">
<meta name="generator" content="quarto-1.2.237">
<meta name="author" content="Zachary Mueller">
<title>Accelerate, Three Powerful Sublibraries for PyTorch</title>
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
<link rel="stylesheet" href="Accelerate_files/libs/revealjs/dist/reset.css">
<link rel="stylesheet" href="Accelerate_files/libs/revealjs/dist/reveal.css">
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1.6em;
vertical-align: middle;
}
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
}
pre.numberSource { margin-left: 3em; padding-left: 4px; }
div.sourceCode
{ color: #f8f8f2; }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span { color: #f8f8f2; } /* Normal */
code span.al { color: #f07178; background-color: #2a0f15; font-weight: bold; } /* Alert */
code span.an { color: #d4d0ab; } /* Annotation */
code span.at { color: #00e0e0; } /* Attribute */
code span.bn { color: #d4d0ab; } /* BaseN */
code span.bu { color: #abe338; } /* BuiltIn */
code span.cf { color: #ffa07a; font-weight: bold; } /* ControlFlow */
code span.ch { color: #abe338; } /* Char */
code span.cn { color: #ffd700; } /* Constant */
code span.co { color: #f8f8f2; font-style: italic; } /* Comment */
code span.cv { color: #ffd700; } /* CommentVar */
code span.do { color: #f8f8f2; } /* Documentation */
code span.dt { color: #ffa07a; } /* DataType */
code span.dv { color: #d4d0ab; } /* DecVal */
code span.er { color: #f07178; text-decoration: underline; } /* Error */
code span.ex { color: #00e0e0; font-weight: bold; } /* Extension */
code span.fl { color: #d4d0ab; } /* Float */
code span.fu { color: #ffa07a; } /* Function */
code span.im { color: #abe338; } /* Import */
code span.in { color: #d4d0ab; } /* Information */
code span.kw { color: #ffa07a; font-weight: bold; } /* Keyword */
code span.op { color: #ffa07a; } /* Operator */
code span.ot { color: #00e0e0; } /* Other */
code span.pp { color: #dcc6e0; } /* Preprocessor */
code span.re { color: #00e0e0; background-color: #f8f8f2; } /* RegionMarker */
code span.sc { color: #abe338; } /* SpecialChar */
code span.ss { color: #abe338; } /* SpecialString */
code span.st { color: #abe338; } /* String */
code span.va { color: #00e0e0; } /* Variable */
code span.vs { color: #abe338; } /* VerbatimString */
code span.wa { color: #dcc6e0; } /* Warning */
</style>
<link rel="stylesheet" href="Accelerate_files/libs/revealjs/dist/theme/quarto.css" id="theme">
<link href="Accelerate_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.css" rel="stylesheet">
<link href="Accelerate_files/libs/revealjs/plugin/reveal-menu/menu.css" rel="stylesheet">
<link href="Accelerate_files/libs/revealjs/plugin/reveal-menu/quarto-menu.css" rel="stylesheet">
<link href="Accelerate_files/libs/revealjs/plugin/quarto-support/footer.css" rel="stylesheet">
<style type="text/css">
.callout {
margin-top: 1em;
margin-bottom: 1em;
border-radius: .25rem;
}
.callout.callout-style-simple {
padding: 0em 0.5em;
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
display: flex;
}
.callout.callout-style-default {
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
}
.callout .callout-body-container {
flex-grow: 1;
}
.callout.callout-style-simple .callout-body {
font-size: 1rem;
font-weight: 400;
}
.callout.callout-style-default .callout-body {
font-size: 0.9rem;
font-weight: 400;
}
.callout.callout-captioned.callout-style-simple .callout-body {
margin-top: 0.2em;
}
.callout:not(.callout-captioned) .callout-body {
display: flex;
}
.callout:not(.no-icon).callout-captioned.callout-style-simple .callout-content {
padding-left: 1.6em;
}
.callout.callout-captioned .callout-header {
padding-top: 0.2em;
margin-bottom: -0.2em;
}
.callout.callout-captioned .callout-caption p {
margin-top: 0.5em;
margin-bottom: 0.5em;
}
.callout.callout-captioned.callout-style-simple .callout-content p {
margin-top: 0;
}
.callout.callout-captioned.callout-style-default .callout-content p {
margin-top: 0.7em;
}
.callout.callout-style-simple div.callout-caption {
border-bottom: none;
font-size: .9rem;
font-weight: 600;
opacity: 75%;
}
.callout.callout-style-default div.callout-caption {
border-bottom: none;
font-weight: 600;
opacity: 85%;
font-size: 0.9rem;
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-default div.callout-content {
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-simple .callout-icon::before {
height: 1rem;
width: 1rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 1rem 1rem;
}
.callout.callout-style-default .callout-icon::before {
height: 0.9rem;
width: 0.9rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 0.9rem 0.9rem;
}
.callout-caption {
display: flex
}
.callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
.callout.no-icon::before {
display: none !important;
}
.callout.callout-captioned .callout-body > .callout-content > :last-child {
margin-bottom: 0.5rem;
}
.callout.callout-captioned .callout-icon::before {
margin-top: .5rem;
padding-right: .5rem;
}
.callout:not(.callout-captioned) .callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
/* Callout Types */
div.callout-note {
border-left-color: #4582ec !important;
}
div.callout-note .callout-icon::before {
background-image: url('');
}
div.callout-note.callout-style-default .callout-caption {
background-color: #dae6fb
}
div.callout-important {
border-left-color: #d9534f !important;
}
div.callout-important .callout-icon::before {
background-image: url('');
}
div.callout-important.callout-style-default .callout-caption {
background-color: #f7dddc
}
div.callout-warning {
border-left-color: #f0ad4e !important;
}
div.callout-warning .callout-icon::before {
background-image: url('');
}
div.callout-warning.callout-style-default .callout-caption {
background-color: #fcefdc
}
div.callout-tip {
border-left-color: #02b875 !important;
}
div.callout-tip .callout-icon::before {
background-image: url('');
}
div.callout-tip.callout-style-default .callout-caption {
background-color: #ccf1e3
}
div.callout-caution {
border-left-color: #fd7e14 !important;
}
div.callout-caution .callout-icon::before {
background-image: url('');
}
div.callout-caution.callout-style-default .callout-caption {
background-color: #ffe5d0
}
</style>
<style type="text/css">
.reveal div.sourceCode {
margin: 0;
overflow: auto;
}
.reveal div.hanging-indent {
margin-left: 1em;
text-indent: -1em;
}
.reveal .slide:not(.center) {
height: 100%;
}
.reveal .slide.scrollable {
overflow-y: auto;
}
.reveal .footnotes {
height: 100%;
overflow-y: auto;
}
.reveal .slide .absolute {
position: absolute;
display: block;
}
.reveal .footnotes ol {
counter-reset: ol;
list-style-type: none;
margin-left: 0;
}
.reveal .footnotes ol li:before {
counter-increment: ol;
content: counter(ol) ". ";
}
.reveal .footnotes ol li > p:first-child {
display: inline-block;
}
.reveal .slide ul,
.reveal .slide ol {
margin-bottom: 0.5em;
}
.reveal .slide ul li,
.reveal .slide ol li {
margin-top: 0.4em;
margin-bottom: 0.2em;
}
.reveal .slide ul[role="tablist"] li {
margin-bottom: 0;
}
.reveal .slide ul li > *:first-child,
.reveal .slide ol li > *:first-child {
margin-block-start: 0;
}
.reveal .slide ul li > *:last-child,
.reveal .slide ol li > *:last-child {
margin-block-end: 0;
}
.reveal .slide .columns:nth-child(3) {
margin-block-start: 0.8em;
}
.reveal blockquote {
box-shadow: none;
}
.reveal .tippy-content>* {
margin-top: 0.2em;
margin-bottom: 0.7em;
}
.reveal .tippy-content>*:last-child {
margin-bottom: 0.2em;
}
.reveal .slide > img.stretch.quarto-figure-center,
.reveal .slide > img.r-stretch.quarto-figure-center {
display: block;
margin-left: auto;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-left,
.reveal .slide > img.r-stretch.quarto-figure-left {
display: block;
margin-left: 0;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-right,
.reveal .slide > img.r-stretch.quarto-figure-right {
display: block;
margin-left: auto;
margin-right: 0;
}
</style>
<script src="Accelerate_files/libs/quarto-diagram/mermaid.min.js"></script>
<script src="Accelerate_files/libs/quarto-diagram/mermaid-init.js"></script>
<link href="Accelerate_files/libs/quarto-diagram/mermaid.css" rel="stylesheet">
</head>
<body class="quarto-dark">
<div class="reveal">
<div class="slides">
<section id="title-slide" class="quarto-title-block center">
<h1 class="title">Accelerate, Three Powerful Sublibraries for PyTorch</h1>
<div class="quarto-title-authors">
<div class="quarto-title-author">
<div class="quarto-title-author-name">
Zachary Mueller
</div>
</div>
</div>
</section>
<section id="who-am-i" class="slide level2">
<h2>Who am I?</h2>
<ul>
<li>Zachary Mueller</li>
<li>Deep Learning Software Engineer at 🤗</li>
<li>API design geek</li>
</ul>
</section>
<section id="what-is-accelerate" class="slide level2">
<h2>What is 🤗 Accelerate?</h2>
<div class="cell" data-reveal="true" data-fig-height="6">
<div class="cell-output-display">
<div>
<p>
</p><pre class="mermaid mermaid-js" data-tooltip-selector="#mermaid-tooltip-1">graph LR
A{"🤗 Accelerate#32;"}
A --&gt; B["Launching&lt;br&gt;Interface#32;"]
A --&gt; C["Training Library#32;"]
A --&gt; D["Big Model&lt;br&gt;Inference#32;"]
</pre>
<div id="mermaid-tooltip-1" class="mermaidTooltip">
</div>
<p></p>
</div>
</div>
</div>
</section>
<section>
<section id="a-launching-interface" class="title-slide slide level1 center">
<h1>A Launching Interface</h1>
<p>Can’t I just use <code>python do_the_thing.py</code>?</p>
</section>
<section id="a-launching-interface-1" class="slide level2">
<h2>A Launching Interface</h2>
<p>Launching scripts in different environments is complicated:</p>
<ul>
<li><div class="sourceCode" id="cb1"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb1-1"><a href="#cb1-1"></a><span class="ex">python</span> script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li>
<li><div class="sourceCode" id="cb2"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb2-1"><a href="#cb2-1"></a><span class="ex">torchrun</span> <span class="at">--nnodes</span><span class="op">=</span>1 <span class="at">--nproc_per_node</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li>
<li><div class="sourceCode" id="cb3"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb3-1"><a href="#cb3-1"></a><span class="ex">deepspeed</span> <span class="at">--num_gpus</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li>
</ul>
<p>And more!</p>
</section>
<section id="a-launching-interface-2" class="slide level2">
<h2>A Launching Interface</h2>
<p>But it doesn’t have to be:</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb4-1"><a href="#cb4-1"></a><span class="ex">accelerate</span> launch script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>A single command to launch with <code>DeepSpeed</code>, Fully Sharded Data Parallelism, across single and multi CPUs and GPUs, and to train on TPUs<sup>1</sup> too!</p>
<aside><ol class="aside-footnotes"><li id="fn1"><p>Without needing to modify your code and create a <code>_mp_fn</code></p></li></ol></aside></section>
<section id="a-launching-interface-3" class="slide level2">
<h2>A Launching Interface</h2>
<p>Generate a device-specific configuration through <code>accelerate config</code></p>
<img data-src="CLI.gif" class="r-stretch"></section>
<section id="a-launching-interface-4" class="slide level2">
<h2>A Launching Interface</h2>
<p>Or don’t. <code>accelerate config</code> doesn’t <em>have</em> to be done!</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb5-1"><a href="#cb5-1"></a><span class="ex">torchrun</span> <span class="at">--nnodes</span><span class="op">=</span>1 <span class="at">--nproc_per_node</span><span class="op">=</span>2 script.py</span>
<span id="cb5-2"><a href="#cb5-2"></a><span class="ex">accelerate</span> launch <span class="at">--multi_gpu</span> <span class="at">--nproc_per_node</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>A quick default configuration can be made too:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb6-1"><a href="#cb6-1"></a><span class="ex">accelerate</span> config default</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section>
<section id="a-launching-interface-5" class="slide level2">
<h2>A Launching Interface</h2>
<p>With the <code>notebook_launcher</code> it’s also possible to launch code directly from your Jupyter environment too!</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb7-1"><a href="#cb7-1"></a><span class="im">from</span> accelerate <span class="im">import</span> notebook_launcher</span>
<span id="cb7-2"><a href="#cb7-2"></a>notebook_launcher(</span>
<span id="cb7-3"><a href="#cb7-3"></a> training_loop_function, </span>
<span id="cb7-4"><a href="#cb7-4"></a> args, </span>
<span id="cb7-5"><a href="#cb7-5"></a> num_processes<span class="op">=</span><span class="dv">2</span></span>
<span id="cb7-6"><a href="#cb7-6"></a>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="sourceCode" id="cb8"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb8-1"><a href="#cb8-1"></a>Launching training on <span class="dv">2</span> GPUs.</span>
<span id="cb8-2"><a href="#cb8-2"></a>epoch <span class="dv">0</span>: <span class="fl">88.12</span></span>
<span id="cb8-3"><a href="#cb8-3"></a>epoch <span class="dv">1</span>: <span class="fl">91.73</span></span>
<span id="cb8-4"><a href="#cb8-4"></a>epoch <span class="dv">2</span>: <span class="fl">92.58</span></span>
<span id="cb8-5"><a href="#cb8-5"></a>epoch <span class="dv">3</span>: <span class="fl">93.90</span></span>
<span id="cb8-6"><a href="#cb8-6"></a>epoch <span class="dv">4</span>: <span class="fl">94.71</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section></section>
<section>
<section id="a-training-library" class="title-slide slide level1 center">
<h1>A Training Library</h1>
<p>Okay, will <code>accelerate launch</code> make <code>do_the_thing.py</code> use all my GPUs magically?</p>
</section>
<section id="a-training-library-1" class="slide level2">
<h2>A Training Library</h2>
<ul>
<li>Just showed that its possible using <code>accelerate launch</code> to <em>launch</em> a python script in various distributed environments</li>
<li>This does <em>not</em> mean that the script will just “use” that code and still run on the new compute efficiently.</li>
<li>Training on different computes often means <em>many</em> lines of code changed for each specific compute.</li>
<li>🤗 <code>accelerate</code> solves this by ensuring the same code can be ran on a CPU or GPU, multiples, and on TPUs!</li>
</ul>
</section>
<section id="a-training-library-2" class="slide level2">
<h2>A Training Library</h2>
<div class="sourceCode" id="cb9"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
<span id="cb9-2"><a href="#cb9-2"></a> optimizer.zero_grad()</span>
<span id="cb9-3"><a href="#cb9-3"></a> inputs, targets <span class="op">=</span> batch</span>
<span id="cb9-4"><a href="#cb9-4"></a> inputs <span class="op">=</span> inputs.to(device)</span>
<span id="cb9-5"><a href="#cb9-5"></a> targets <span class="op">=</span> targets.to(device)</span>
<span id="cb9-6"><a href="#cb9-6"></a> outputs <span class="op">=</span> model(inputs)</span>
<span id="cb9-7"><a href="#cb9-7"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
<span id="cb9-8"><a href="#cb9-8"></a> loss.backward()</span>
<span id="cb9-9"><a href="#cb9-9"></a> optimizer.step()</span>
<span id="cb9-10"><a href="#cb9-10"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section>
<section id="a-training-library-3" class="slide level2 smaller">
<h2>A Training Library</h2>
<div class="columns">
<div class="column" style="width:43%;">
<p><br><br><br></p>
<div class="sourceCode" id="cb10" data-code-line-numbers="5-6,9"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb10-1"><a href="#cb10-1"></a><span class="co"># For alignment purposes</span></span>
<span id="cb10-2"><a href="#cb10-2"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
<span id="cb10-3"><a href="#cb10-3"></a> optimizer.zero_grad()</span>
<span id="cb10-4"><a href="#cb10-4"></a> inputs, targets <span class="op">=</span> batch</span>
<span id="cb10-5"><a href="#cb10-5"></a> inputs <span class="op">=</span> inputs.to(device)</span>
<span id="cb10-6"><a href="#cb10-6"></a> targets <span class="op">=</span> targets.to(device)</span>
<span id="cb10-7"><a href="#cb10-7"></a> outputs <span class="op">=</span> model(inputs)</span>
<span id="cb10-8"><a href="#cb10-8"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
<span id="cb10-9"><a href="#cb10-9"></a> loss.backward()</span>
<span id="cb10-10"><a href="#cb10-10"></a> optimizer.step()</span>
<span id="cb10-11"><a href="#cb10-11"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div><div class="column" style="width:57%;">
<div class="sourceCode" id="cb11" data-code-line-numbers="1-7,12-13,16"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb11-1"><a href="#cb11-1"></a><span class="im">from</span> accelerate <span class="im">import</span> Accelerator</span>
<span id="cb11-2"><a href="#cb11-2"></a>accelerator <span class="op">=</span> Accelerator()</span>
<span id="cb11-3"><a href="#cb11-3"></a>dataloader, model, optimizer scheduler <span class="op">=</span> (</span>
<span id="cb11-4"><a href="#cb11-4"></a> accelerator.prepare(</span>
<span id="cb11-5"><a href="#cb11-5"></a> dataloader, model, optimizer, scheduler</span>
<span id="cb11-6"><a href="#cb11-6"></a> )</span>
<span id="cb11-7"><a href="#cb11-7"></a>)</span>
<span id="cb11-8"><a href="#cb11-8"></a></span>
<span id="cb11-9"><a href="#cb11-9"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
<span id="cb11-10"><a href="#cb11-10"></a> optimizer.zero_grad()</span>
<span id="cb11-11"><a href="#cb11-11"></a> inputs, targets <span class="op">=</span> batch</span>
<span id="cb11-12"><a href="#cb11-12"></a> <span class="co"># inputs = inputs.to(device)</span></span>
<span id="cb11-13"><a href="#cb11-13"></a> <span class="co"># targets = targets.to(device)</span></span>
<span id="cb11-14"><a href="#cb11-14"></a> outputs <span class="op">=</span> model(inputs)</span>
<span id="cb11-15"><a href="#cb11-15"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
<span id="cb11-16"><a href="#cb11-16"></a> accelerator.backward(loss) <span class="co"># loss.backward()</span></span>
<span id="cb11-17"><a href="#cb11-17"></a> optimizer.step()</span>
<span id="cb11-18"><a href="#cb11-18"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div>
</section>
<section id="a-training-library-4" class="slide level2">
<h2>A Training Library</h2>
<p>What all happened in <code>Accelerator.prepare</code>?</p>
<div>
<ol type="1">
<li class="fragment"><code>Accelerator</code> looked at the configuration</li>
<li class="fragment">The <code>dataloader</code> was converted into one that can dispatch each batch onto a seperate GPU</li>
<li class="fragment">The <code>model</code> was wrapped with the appropriate DDP wrapper from either <code>torch.distributed</code> or <code>torch_xla</code></li>
<li class="fragment">The <code>optimizer</code> and <code>scheduler</code> were both converted into an <code>AcceleratedOptimizer</code> and <code>AcceleratedScheduler</code> which knows how to handle any distributed scenario</li>
</ol>
</div>
</section>
<section id="a-training-library-mixed-precision" class="slide level2">
<h2>A Training Library, Mixed Precision</h2>
<p>🤗 <code>accelerate</code> also supports <em>automatic mixed precision</em>.</p>
<p>Through a single flag to the <code>Accelerator</code> object when calling <code>accelerator.backward()</code> the mixed precision of your choosing (such as <code>bf16</code> or <code>fp16</code>) will be applied:</p>
<div class="sourceCode" id="cb12" data-code-line-numbers="2,9"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb12-1"><a href="#cb12-1"></a><span class="im">from</span> accelerate <span class="im">import</span> Accelerator</span>
<span id="cb12-2"><a href="#cb12-2"></a>accelerator <span class="op">=</span> Accelerator(mixed_precision<span class="op">=</span><span class="st">"fp16"</span>)</span>
<span id="cb12-3"><a href="#cb12-3"></a>...</span>
<span id="cb12-4"><a href="#cb12-4"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
<span id="cb12-5"><a href="#cb12-5"></a> optimizer.zero_grad()</span>
<span id="cb12-6"><a href="#cb12-6"></a> inputs, targets <span class="op">=</span> batch</span>
<span id="cb12-7"><a href="#cb12-7"></a> outputs <span class="op">=</span> model(inputs)</span>
<span id="cb12-8"><a href="#cb12-8"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
<span id="cb12-9"><a href="#cb12-9"></a> accelerator.backward(loss)</span>
<span id="cb12-10"><a href="#cb12-10"></a> optimizer.step()</span>
<span id="cb12-11"><a href="#cb12-11"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section>
<section id="a-training-library-gradient-accumulation" class="slide level2">
<h2>A Training Library, Gradient Accumulation</h2>
<p>Gradient accumulation in distributed setups often need extra care to ensure gradients are aligned when they need to be and the backward pass is computationally efficient.</p>
<p>🤗 <code>accelerate</code> can just easily handle this for you:</p>
<div class="sourceCode" id="cb13" data-code-line-numbers="2,5"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb13-1"><a href="#cb13-1"></a><span class="im">from</span> accelerate <span class="im">import</span> Accelerator</span>
<span id="cb13-2"><a href="#cb13-2"></a>accelerator <span class="op">=</span> Accelerator(gradient_accumulation_steps<span class="op">=</span><span class="dv">4</span>)</span>
<span id="cb13-3"><a href="#cb13-3"></a>...</span>
<span id="cb13-4"><a href="#cb13-4"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
<span id="cb13-5"><a href="#cb13-5"></a> <span class="cf">with</span> accelerator.accumulate(model):</span>
<span id="cb13-6"><a href="#cb13-6"></a> optimizer.zero_grad()</span>
<span id="cb13-7"><a href="#cb13-7"></a> inputs, targets <span class="op">=</span> batch</span>
<span id="cb13-8"><a href="#cb13-8"></a> outputs <span class="op">=</span> model(inputs)</span>
<span id="cb13-9"><a href="#cb13-9"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
<span id="cb13-10"><a href="#cb13-10"></a> accelerator.backward(loss)</span>
<span id="cb13-11"><a href="#cb13-11"></a> optimizer.step()</span>
<span id="cb13-12"><a href="#cb13-12"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section>
<section id="a-training-library-gradient-accumulation-1" class="slide level2">
<h2>A Training Library, Gradient Accumulation</h2>
<div class="sourceCode" id="cb14" data-code-line-numbers="5-7,10,11,12,15"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb14-1"><a href="#cb14-1"></a>ddp_model, dataloader <span class="op">=</span> accelerator.prepare(model, dataloader)</span>
<span id="cb14-2"><a href="#cb14-2"></a></span>
<span id="cb14-3"><a href="#cb14-3"></a><span class="cf">for</span> index, batch <span class="kw">in</span> <span class="bu">enumerate</span>(dataloader):</span>
<span id="cb14-4"><a href="#cb14-4"></a> inputs, targets <span class="op">=</span> batch</span>
<span id="cb14-5"><a href="#cb14-5"></a> <span class="cf">if</span> index <span class="op">!=</span> (<span class="bu">len</span>(dataloader)<span class="op">-</span><span class="dv">1</span>) <span class="kw">or</span> (index <span class="op">%</span> <span class="dv">4</span>) <span class="op">!=</span> <span class="dv">0</span>:</span>
<span id="cb14-6"><a href="#cb14-6"></a> <span class="co"># Gradients don't sync</span></span>
<span id="cb14-7"><a href="#cb14-7"></a> <span class="cf">with</span> accelerator.no_sync(model):</span>
<span id="cb14-8"><a href="#cb14-8"></a> outputs <span class="op">=</span> ddp_model(inputs)</span>
<span id="cb14-9"><a href="#cb14-9"></a> loss <span class="op">=</span> loss_func(outputs, targets)</span>
<span id="cb14-10"><a href="#cb14-10"></a> accelerator.backward(loss)</span>
<span id="cb14-11"><a href="#cb14-11"></a> <span class="cf">else</span>:</span>
<span id="cb14-12"><a href="#cb14-12"></a> <span class="co"># Gradients finally sync</span></span>
<span id="cb14-13"><a href="#cb14-13"></a> outputs <span class="op">=</span> ddp_model(inputs)</span>
<span id="cb14-14"><a href="#cb14-14"></a> loss <span class="op">=</span> loss_func(outputs)</span>
<span id="cb14-15"><a href="#cb14-15"></a> accelerator.backward(loss)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section></section>
<section>
<section id="big-model-inference" class="title-slide slide level1 center">
<h1>Big Model Inference</h1>
<p>Stable Diffusion taking the world by storm</p>
</section>
<section id="bigger-models-higher-compute" class="slide level2">
<h2>Bigger Models == Higher Compute</h2>
<p>As more large models were being released, Hugging Face quickly realized there must be a way to continue our decentralization of Machine Learning and have the day-to-day programmer be able to leverage these big models.</p>
<p>Born out of this effort by Sylvain Gugger:</p>
<p>🤗 Accelerate: Big Model Inference.</p>
</section>
<section id="the-basic-premise" class="slide level2">
<h2>The Basic Premise</h2>
<div>
<ul>
<li class="fragment"><p>In PyTorch, there exists the <code>meta</code> device.</p></li>
<li class="fragment"><p>Super small footprint to load in huge models quickly by not loading in their weights immediatly.</p></li>
<li class="fragment"><p>As an input gets passed through each layer, we can load and unload <em>parts</em> of the PyTorch model quickly so that only a small portion of the big model is loaded in at a single time.</p></li>
<li class="fragment"><p>The end result? Stable Diffusion v1 can be ran on &lt; 800mb of vRAM</p></li>
</ul>
</div>
</section>
<section id="the-code" class="slide level2">
<h2>The Code</h2>
<p>Generally you start with something like so:</p>
<div class="sourceCode" id="cb15"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb15-1"><a href="#cb15-1"></a><span class="im">import</span> torch</span>
<span id="cb15-2"><a href="#cb15-2"></a></span>
<span id="cb15-3"><a href="#cb15-3"></a>my_model <span class="op">=</span> ModelClass(...)</span>
<span id="cb15-4"><a href="#cb15-4"></a>state_dict <span class="op">=</span> torch.load(checkpoint_file)</span>
<span id="cb15-5"><a href="#cb15-5"></a>my_model.load_state_dict(state_dict)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>But this has issues:</p>
<ol type="1">
<li>The full version of the model is loaded at <code>3</code></li>
<li>Another version of the model is loaded into memory at <code>4</code></li>
</ol>
<p>If a 6 <em>billion</em> parameter model is being loaded, each model class has a dictionary of 24GB so 48GB of vRAM is needed</p>
</section>
<section id="empty-model-weights" class="slide level2">
<h2>Empty Model Weights</h2>
<p>We can fix step 1 by loading in an empty model skeleton at first:</p>
<div class="sourceCode" id="cb16" data-code-line-numbers="1,3-4"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb16-1"><a href="#cb16-1"></a><span class="im">from</span> accelerate <span class="im">import</span> init_empty_weights</span>
<span id="cb16-2"><a href="#cb16-2"></a></span>
<span id="cb16-3"><a href="#cb16-3"></a><span class="cf">with</span> init_empty_weights():</span>
<span id="cb16-4"><a href="#cb16-4"></a> my_model <span class="op">=</span> ModelClass(...)</span>
<span id="cb16-5"><a href="#cb16-5"></a>state_dict <span class="op">=</span> torch.load(checkpoint_file)</span>
<span id="cb16-6"><a href="#cb16-6"></a>my_model.load_state_dict(state_dict)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="callout callout-important callout-captioned callout-style-default">
<div class="callout-body">
<div class="callout-caption">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<p><strong>This code will not run</strong></p>
</div>
<div class="callout-content">
<p>It is likely that just calling <code>my_model(x)</code> will fail as not all tensor operations are supported on the <code>meta</code> device.</p>
</div>
</div>
</div>
</section>
<section id="sharded-checkpoints---the-concept" class="slide level2">
<h2>Sharded Checkpoints - The Concept</h2>
<p>The next step is to have “Sharded Checkpoints” saved for your model.</p>
<p>Basically smaller chunks of your model weights stored that can be brought in at any particular time.</p>
<p>This reduces the amount of memory step 2 takes in since we can just load in a “chunk” of the model at a time, then swap it out for a new chunk through PyTorch hooks</p>
</section>
<section id="sharded-checkpoints---the-code" class="slide level2">
<h2>Sharded Checkpoints - The Code</h2>
<div class="sourceCode" id="cb17" data-code-line-numbers="1,6-8"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb17-1"><a href="#cb17-1"></a><span class="im">from</span> accelerate <span class="im">import</span> init_empty_weights, load_checkpoint_and_dispatch</span>
<span id="cb17-2"><a href="#cb17-2"></a></span>
<span id="cb17-3"><a href="#cb17-3"></a><span class="cf">with</span> init_empty_weights():</span>
<span id="cb17-4"><a href="#cb17-4"></a> my_model <span class="op">=</span> ModelClass(...)</span>
<span id="cb17-5"><a href="#cb17-5"></a></span>
<span id="cb17-6"><a href="#cb17-6"></a>my_model <span class="op">=</span> load_checkpoint_and_dispatch(</span>
<span id="cb17-7"><a href="#cb17-7"></a> my_model, <span class="st">"sharded-weights"</span>, device_map<span class="op">=</span><span class="st">"auto"</span></span>
<span id="cb17-8"><a href="#cb17-8"></a>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p><code>device_map="auto"</code> will tell 🤗 Accelerate that it should determine where to put each layer of the model:</p>
<ol type="1">
<li>Maximum space on the GPU(s)</li>
<li>Maximum space on the CPU(s)</li>
<li>Utilize disk space through memory-mapped tensors</li>
</ol>
</section>
<section id="big-model-inference-put-together" class="slide level2">
<h2>Big Model Inference Put Together</h2>
<div class="sourceCode" id="cb18"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb18-1"><a href="#cb18-1"></a><span class="im">from</span> accelerate <span class="im">import</span> init_empty_weights, load_checkpoint_and_dispatch</span>
<span id="cb18-2"><a href="#cb18-2"></a></span>
<span id="cb18-3"><a href="#cb18-3"></a><span class="cf">with</span> init_empty_weights():</span>
<span id="cb18-4"><a href="#cb18-4"></a> my_model <span class="op">=</span> ModelClass(...)</span>
<span id="cb18-5"><a href="#cb18-5"></a></span>
<span id="cb18-6"><a href="#cb18-6"></a>my_model <span class="op">=</span> load_checkpoint_and_dispatch(</span>
<span id="cb18-7"><a href="#cb18-7"></a> my_model, <span class="st">"sharded-weights"</span>, device_map<span class="op">=</span><span class="st">"auto"</span></span>
<span id="cb18-8"><a href="#cb18-8"></a>)</span>
<span id="cb18-9"><a href="#cb18-9"></a>my_model.<span class="bu">eval</span>()</span>
<span id="cb18-10"><a href="#cb18-10"></a></span>
<span id="cb18-11"><a href="#cb18-11"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
<span id="cb18-12"><a href="#cb18-12"></a> output <span class="op">=</span> my_model(batch)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section>
<section id="is-there-an-easier-way" class="slide level2">
<h2>Is there an easier way?</h2>
<p>The <code>transformers</code> library combined with the Hub makes all this code wrapping much easier for you with the <code>pipeline</code></p>
<div class="sourceCode" id="cb19"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb19-1"><a href="#cb19-1"></a><span class="im">import</span> torch</span>
<span id="cb19-2"><a href="#cb19-2"></a><span class="im">from</span> transformers <span class="im">import</span> pipeline</span>
<span id="cb19-3"><a href="#cb19-3"></a>pipe <span class="op">=</span> pipeline(</span>
<span id="cb19-4"><a href="#cb19-4"></a> task<span class="op">=</span><span class="st">"text-generation"</span>,</span>
<span id="cb19-5"><a href="#cb19-5"></a> model<span class="op">=</span><span class="st">"EleutherAI/gpt-j-6B"</span>,</span>
<span id="cb19-6"><a href="#cb19-6"></a> device_map<span class="op">=</span><span class="st">"auto"</span>,</span>
<span id="cb19-7"><a href="#cb19-7"></a> torch_dtype<span class="op">=</span>torch.float16</span>
<span id="cb19-8"><a href="#cb19-8"></a>)</span>
<span id="cb19-9"><a href="#cb19-9"></a></span>
<span id="cb19-10"><a href="#cb19-10"></a>text <span class="op">=</span> pipe(<span class="st">"This is some generated text, I think"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section></section>
<section>
<section id="what-about-stable-diffusion" class="title-slide slide level1 center">
<h1>What about Stable Diffusion?</h1>
<p>A demo with <code>diffusers</code> &amp; Weights and Biases</p>
</section>
<section id="some-handy-resources" class="slide level2">
<h2>Some Handy Resources</h2>
<ul>
<li><a href="https://hf.co/docs/accelerate">🤗 Accelerate documentation</a></li>
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/launch">Launching distributed code</a></li>
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/notebook">Distributed code and Jupyter Notebooks</a></li>
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/migration">Migrating to 🤗 Accelerate easily</a></li>
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/big_modeling">Big Model Inference tutorial</a></li>
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/deepspeed">DeepSpeed and 🤗 Accelerate</a></li>
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/fsdp">Fully Sharded Data Parallelism and 🤗 Accelerate</a></li>
</ul>
<div class="footer footer-default">
</div>
</section></section>
</div>
</div>
<script>window.backupDefine = window.define; window.define = undefined;</script>
<script src="Accelerate_files/libs/revealjs/dist/reveal.js"></script>
<!-- reveal.js plugins -->
<script src="Accelerate_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.js"></script>
<script src="Accelerate_files/libs/revealjs/plugin/pdf-export/pdfexport.js"></script>
<script src="Accelerate_files/libs/revealjs/plugin/reveal-menu/menu.js"></script>
<script src="Accelerate_files/libs/revealjs/plugin/reveal-menu/quarto-menu.js"></script>
<script src="Accelerate_files/libs/revealjs/plugin/quarto-support/support.js"></script>
<script src="Accelerate_files/libs/revealjs/plugin/notes/notes.js"></script>
<script src="Accelerate_files/libs/revealjs/plugin/search/search.js"></script>
<script src="Accelerate_files/libs/revealjs/plugin/zoom/zoom.js"></script>
<script src="Accelerate_files/libs/revealjs/plugin/math/math.js"></script>
<script>window.define = window.backupDefine; window.backupDefine = undefined;</script>
<script>
// Full list of configuration options available at:
// https://revealjs.com/config/
Reveal.initialize({
'controlsAuto': true,
'previewLinksAuto': false,
'smaller': false,
'pdfSeparateFragments': false,
'autoAnimateEasing': "ease",
'autoAnimateDuration': 1,
'autoAnimateUnmatched': true,
'menu': {"side":"left","useTextContentForMissingTitles":true,"markers":false,"loadIcons":false,"custom":[{"title":"Tools","icon":"<i class=\"fas fa-gear\"></i>","content":"<ul class=\"slide-menu-items\">\n<li class=\"slide-tool-item active\" data-item=\"0\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.fullscreen(event)\"><kbd>f</kbd> Fullscreen</a></li>\n<li class=\"slide-tool-item\" data-item=\"1\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.speakerMode(event)\"><kbd>s</kbd> Speaker View</a></li>\n<li class=\"slide-tool-item\" data-item=\"2\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.overview(event)\"><kbd>o</kbd> Slide Overview</a></li>\n<li class=\"slide-tool-item\" data-item=\"3\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.overview(event)\"><kbd>e</kbd> PDF Export Mode</a></li>\n<li class=\"slide-tool-item\" data-item=\"4\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.keyboardHelp(event)\"><kbd>?</kbd> Keyboard Help</a></li>\n</ul>"}],"openButton":true},
'smaller': false,
// Display controls in the bottom right corner
controls: false,
// Help the user learn the controls by providing hints, for example by
// bouncing the down arrow when they first encounter a vertical slide
controlsTutorial: false,
// Determines where controls appear, "edges" or "bottom-right"
controlsLayout: 'edges',
// Visibility rule for backwards navigation arrows; "faded", "hidden"
// or "visible"
controlsBackArrows: 'faded',
// Display a presentation progress bar
progress: true,
// Display the page number of the current slide
slideNumber: false,
// 'all', 'print', or 'speaker'
showSlideNumber: 'all',
// Add the current slide number to the URL hash so that reloading the
// page/copying the URL will return you to the same slide
hash: true,
// Start with 1 for the hash rather than 0
hashOneBasedIndex: false,
// Flags if we should monitor the hash and change slides accordingly
respondToHashChanges: true,
// Push each slide change to the browser history
history: true,
// Enable keyboard shortcuts for navigation
keyboard: true,
// Enable the slide overview mode
overview: true,
// Disables the default reveal.js slide layout (scaling and centering)
// so that you can use custom CSS layout
disableLayout: false,
// Vertical centering of slides
center: false,
// Enables touch navigation on devices with touch input
touch: true,
// Loop the presentation
loop: false,
// Change the presentation direction to be RTL
rtl: false,
// see https://revealjs.com/vertical-slides/#navigation-mode
navigationMode: 'linear',
// Randomizes the order of slides each time the presentation loads
shuffle: false,
// Turns fragments on and off globally
fragments: true,
// Flags whether to include the current fragment in the URL,
// so that reloading brings you to the same fragment position
fragmentInURL: false,
// Flags if the presentation is running in an embedded mode,
// i.e. contained within a limited portion of the screen
embedded: false,
// Flags if we should show a help overlay when the questionmark
// key is pressed
help: true,
// Flags if it should be possible to pause the presentation (blackout)
pause: true,
// Flags if speaker notes should be visible to all viewers
showNotes: false,
// Global override for autoplaying embedded media (null/true/false)
autoPlayMedia: null,
// Global override for preloading lazy-loaded iframes (null/true/false)
preloadIframes: null,
// Number of milliseconds between automatically proceeding to the
// next slide, disabled when set to 0, this value can be overwritten
// by using a data-autoslide attribute on your slides
autoSlide: 0,
// Stop auto-sliding after user input
autoSlideStoppable: true,
// Use this method for navigation when auto-sliding
autoSlideMethod: null,
// Specify the average time in seconds that you think you will spend
// presenting each slide. This is used to show a pacing timer in the
// speaker view
defaultTiming: null,
// Enable slide navigation via mouse wheel
mouseWheel: false,
// The display mode that will be used to show slides
display: 'block',
// Hide cursor if inactive
hideInactiveCursor: true,
// Time before the cursor is hidden (in ms)
hideCursorTime: 5000,
// Opens links in an iframe preview overlay
previewLinks: false,
// Transition style (none/fade/slide/convex/concave/zoom)
transition: 'none',
// Transition speed (default/fast/slow)
transitionSpeed: 'default',
// Transition style for full page slide backgrounds
// (none/fade/slide/convex/concave/zoom)
backgroundTransition: 'none',
// Number of slides away from the current that are visible
viewDistance: 3,
// Number of slides away from the current that are visible on mobile
// devices. It is advisable to set this to a lower number than
// viewDistance in order to save resources.
mobileViewDistance: 2,
// The "normal" size of the presentation, aspect ratio will be preserved
// when the presentation is scaled to fit different resolutions. Can be
// specified using percentage units.
width: 1050,
height: 700,
// Factor of the display size that should remain empty around the content
margin: 0.1,
math: {
mathjax: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js',
config: 'TeX-AMS_HTML-full',
tex2jax: {
inlineMath: [['\\(','\\)']],
displayMath: [['\\[','\\]']],
balanceBraces: true,
processEscapes: false,
processRefs: true,
processEnvironments: true,
preview: 'TeX',
skipTags: ['script','noscript','style','textarea','pre','code'],
ignoreClass: 'tex2jax_ignore',
processClass: 'tex2jax_process'
},
},
// reveal.js plugins
plugins: [QuartoLineHighlight, PdfExport, RevealMenu, QuartoSupport,
RevealMath,
RevealNotes,
RevealSearch,
RevealZoom
]
});
</script>
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const tabsets = window.document.querySelectorAll(".panel-tabset-tabby")
tabsets.forEach(function(tabset) {
const tabby = new Tabby('#' + tabset.id);
});
const clipboard = new window.ClipboardJS('.code-copy-button', {
target: function(trigger) {
return trigger.previousElementSibling;
}
});
clipboard.on('success', function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
let tooltip;
if (window.bootstrap) {
button.setAttribute("data-bs-toggle", "tooltip");
button.setAttribute("data-bs-placement", "left");
button.setAttribute("data-bs-title", "Copied!");
tooltip = new bootstrap.Tooltip(button,
{ trigger: "manual",
customClass: "code-copy-button-tooltip",
offset: [0, -8]});
tooltip.show();
}
setTimeout(function() {
if (tooltip) {
tooltip.hide();
button.removeAttribute("data-bs-title");
button.removeAttribute("data-bs-toggle");
button.removeAttribute("data-bs-placement");
}
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
});
function tippyHover(el, contentFn) {
const config = {
allowHTML: true,
content: contentFn,
maxWidth: 500,
delay: 100,
arrow: false,
appendTo: function(el) {
return el.closest('section.slide') || el.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'quarto-reveal',
placement: 'bottom-start'
};
config['offset'] = [0,0];
config['maxWidth'] = 700;
window.tippy(el, config);
}
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
for (var i=0; i<noterefs.length; i++) {
const ref = noterefs[i];
tippyHover(ref, function() {
// use id or data attribute instead here
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
try { href = new URL(href).hash; } catch {}
const id = href.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
return note.innerHTML;
});
}
const findCites = (el) => {
const parentEl = el.parentElement;
if (parentEl) {
const cites = parentEl.dataset.cites;
if (cites) {
return {
el,
cites: cites.split(' ')
};
} else {
return findCites(el.parentElement)
}
} else {
return undefined;
}
};
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
for (var i=0; i<bibliorefs.length; i++) {
const ref = bibliorefs[i];
const citeInfo = findCites(ref);
if (citeInfo) {
tippyHover(citeInfo.el, function() {
var popup = window.document.createElement('div');
citeInfo.cites.forEach(function(cite) {
var citeDiv = window.document.createElement('div');
citeDiv.classList.add('hanging-indent');
citeDiv.classList.add('csl-entry');
var biblioDiv = window.document.getElementById('ref-' + cite);
if (biblioDiv) {
citeDiv.innerHTML = biblioDiv.innerHTML;
}
popup.appendChild(citeDiv);
});
return popup.innerHTML;
});
}
}
});
</script>
</body></html>