File size: 4,584 Bytes
5caf9f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8797ea9
5caf9f6
 
 
 
 
cc84e12
5caf9f6
cc6ab29
8797ea9
f8e3643
 
ddee674
9819103
5e8c823
ddee674
9819103
5e8c823
 
8797ea9
5caf9f6
 
8797ea9
cc84e12
5caf9f6
cc84e12
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import torchvision.transforms as transforms

norm_layer = nn.InstanceNorm2d

class ResidualBlock(nn.Module):
    def __init__(self, in_features):
        super(ResidualBlock, self).__init__()

        conv_block = [  nn.ReflectionPad2d(1),
                        nn.Conv2d(in_features, in_features, 3),
                        norm_layer(in_features),
                        nn.ReLU(inplace=True),
                        nn.ReflectionPad2d(1),
                        nn.Conv2d(in_features, in_features, 3),
                        norm_layer(in_features)
                        ]

        self.conv_block = nn.Sequential(*conv_block)

    def forward(self, x):
        return x + self.conv_block(x)


class Generator(nn.Module):
    def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
        super(Generator, self).__init__()

        # Initial convolution block
        model0 = [   nn.ReflectionPad2d(3),
                    nn.Conv2d(input_nc, 64, 7),
                    norm_layer(64),
                    nn.ReLU(inplace=True) ]
        self.model0 = nn.Sequential(*model0)

        # Downsampling
        model1 = []
        in_features = 64
        out_features = in_features*2
        for _ in range(2):
            model1 += [  nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
                        norm_layer(out_features),
                        nn.ReLU(inplace=True) ]
            in_features = out_features
            out_features = in_features*2
        self.model1 = nn.Sequential(*model1)

        model2 = []
        # Residual blocks
        for _ in range(n_residual_blocks):
            model2 += [ResidualBlock(in_features)]
        self.model2 = nn.Sequential(*model2)

        # Upsampling
        model3 = []
        out_features = in_features//2
        for _ in range(2):
            model3 += [  nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
                        norm_layer(out_features),
                        nn.ReLU(inplace=True) ]
            in_features = out_features
            out_features = in_features//2
        self.model3 = nn.Sequential(*model3)

        # Output layer
        model4 = [  nn.ReflectionPad2d(3),
                        nn.Conv2d(64, output_nc, 7)]
        if sigmoid:
            model4 += [nn.Sigmoid()]

        self.model4 = nn.Sequential(*model4)

    def forward(self, x, cond=None):
        out = self.model0(x)
        out = self.model1(out)
        out = self.model2(out)
        out = self.model3(out)
        out = self.model4(out)

        return out

model1 = Generator(3, 1, 3)
model1.load_state_dict(torch.load('model.pth', map_location=torch.device('cpu')))
model1.eval()

model2 = Generator(3, 1, 3)
model2.load_state_dict(torch.load('model2.pth', map_location=torch.device('cpu')))
model2.eval()

def predict(input_img, ver):
    input_img = Image.open(input_img)
    transform = transforms.Compose([transforms.Resize(256, Image.BICUBIC), transforms.ToTensor()])
    input_img = transform(input_img)
    input_img = torch.unsqueeze(input_img, 0)

    drawing = 0
    with torch.no_grad():
        if ver == 'Simple Lines':
            drawing = model2(input_img)[0].detach()
        else:
            drawing = model1(input_img)[0].detach()
    
    drawing = transforms.ToPILImage()(drawing)
    return drawing

title="Image to Line Drawings - Complex and Simple Portraits and Landscapes"
examples=[
['01.jpeg', 'Simple Lines'], ['02.jpeg', 'Simple Lines'], ['03.jpeg', 'Simple Lines'],
['07.jpeg', 'Complex Lines'], ['08.jpeg', 'Complex Lines'], ['09.jpeg', 'Complex Lines'],
['10.jpeg', 'Simple Lines'], ['11.jpeg', 'Simple Lines'], ['12.jpeg', 'Simple Lines'],
['01.jpeg', 'Complex Lines'], ['02.jpeg', 'Complex Lines'], ['03.jpeg', 'Complex Lines'],
['04.jpeg', 'Simple Lines'], ['05.jpeg', 'Simple Lines'], ['06.jpeg', 'Simple Lines'],
['07.jpeg', 'Simple Lines'], ['08.jpeg', 'Simple Lines'], ['09.jpeg', 'Simple Lines'],
['04.jpeg', 'Complex Lines'], ['05.jpeg', 'Complex Lines'], ['06.jpeg', 'Complex Lines'],
['10.jpeg', 'Complex Lines'], ['11.jpeg', 'Complex Lines'], ['12.jpeg', 'Complex Lines'],
['Upload Wild Horses 2.jpeg', 'Complex Lines']
]

iface = gr.Interface(predict, [gr.inputs.Image(type='filepath'),
    gr.inputs.Radio(['Complex Lines','Simple Lines'], type="value", default='Simple Lines', label='version')],
    gr.outputs.Image(type="pil"), title=title,examples=examples)

iface.launch()