muhammadsalmanalfaridzi's picture
Update app.py
7e07d39 verified
raw
history blame
33.4 kB
import os
import zipfile
import shutil
import time
from PIL import Image, ImageDraw
import io
from rembg import remove
import gradio as gr
from concurrent.futures import ThreadPoolExecutor
from diffusers import StableDiffusionPipeline
from transformers import pipeline
import numpy as np
import json
import torch
# Load Stable Diffusion Model
def load_stable_diffusion_model():
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float32).to(device)
return pipe
# Initialize the model globally
sd_model = load_stable_diffusion_model()
def remove_background_rembg(input_path):
print(f"Removing background using rembg for image: {input_path}")
with open(input_path, 'rb') as i:
input_image = i.read()
output_image = remove(input_image)
img = Image.open(io.BytesIO(output_image)).convert("RGBA")
return img
def remove_background_bria(input_path):
print(f"Removing background using bria for image: {input_path}")
pipe = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True, device=0)
pillow_image = pipe(input_path)
return pillow_image
# Fungsi untuk memproses gambar menggunakan prompt
def text_to_image(prompt):
image = sd_model(prompt).images[0] # Use sd_model instead of pipe
image_path = f"generated_images/{prompt.replace(' ', '_')}.png"
image.save(image_path)
return image, image_path
def text_image_to_image(image, prompt):
# Convert input image to PIL Image for processing
modified_image = sd_model(prompt, init_image=image, strength=0.75).images[0] # Use sd_model here too
image_path = f"generated_images/{prompt.replace(' ', '_')}_modified.png"
modified_image.save(image_path)
return modified_image, image_path
def process_images(image_paths):
with ThreadPoolExecutor() as executor:
results = list(executor.map(remove_background_rembg, image_paths))
return results
def get_bounding_box_with_threshold(image, threshold):
# Convert image to numpy array
img_array = np.array(image)
# Get alpha channel
alpha = img_array[:,:,3]
# Find rows and columns where alpha > threshold
rows = np.any(alpha > threshold, axis=1)
cols = np.any(alpha > threshold, axis=0)
# Find the bounding box
top, bottom = np.where(rows)[0][[0, -1]]
left, right = np.where(cols)[0][[0, -1]]
if left < right and top < bottom:
return (left, top, right, bottom)
else:
return None
def check_cropped_sides(image, tolerance):
cropped_sides = []
width, height = image.size
edges = {
"top": [(x, 0) for x in range(width)],
"bottom": [(x, height - 1) for x in range(width)],
"left": [(0, y) for y in range(height)],
"right": [(width - 1, y) for y in range(height)]
}
for side, pixels in edges.items():
if any(image.getpixel(pixel)[3] > tolerance for pixel in pixels):
cropped_sides.append(side)
return cropped_sides
def resize_image(image, target_size, aspect_ratio):
target_width, target_height = target_size
if aspect_ratio > 1: # Landscape
new_height = target_height
new_width = int(new_height * aspect_ratio)
else: # Portrait or square
new_width = target_width
new_height = int(new_width / aspect_ratio)
return image.resize((new_width, new_height), Image.LANCZOS), new_width, new_height
def position_logic(image_path, canvas_size, padding_top, padding_right, padding_bottom, padding_left, use_threshold=True):
image = Image.open(image_path)
image = image.convert("RGBA")
# Get the bounding box of the non-blank area with threshold
if use_threshold:
bbox = get_bounding_box_with_threshold(image, threshold=10)
else:
bbox = image.getbbox()
log = []
if bbox:
# Check 1 pixel around the image for non-transparent pixels
width, height = image.size
cropped_sides = []
# Define tolerance for transparency
tolerance = 30 # Adjust this value as needed
# Check top edge
if any(image.getpixel((x, 0))[3] > tolerance for x in range(width)):
cropped_sides.append("top")
# Check bottom edge
if any(image.getpixel((x, height-1))[3] > tolerance for x in range(width)):
cropped_sides.append("bottom")
# Check left edge
if any(image.getpixel((0, y))[3] > tolerance for y in range(height)):
cropped_sides.append("left")
# Check right edge
if any(image.getpixel((width-1, y))[3] > tolerance for y in range(height)):
cropped_sides.append("right")
if cropped_sides:
info_message = f"Info for {os.path.basename(image_path)}: The following sides of the image may contain cropped objects: {', '.join(cropped_sides)}"
print(info_message)
log.append({"info": info_message})
else:
info_message = f"Info for {os.path.basename(image_path)}: The image is not cropped."
print(info_message)
log.append({"info": info_message})
# Crop the image to the bounding box
image = image.crop(bbox)
log.append({"action": "crop", "bbox": [str(bbox[0]), str(bbox[1]), str(bbox[2]), str(bbox[3])]})
# Calculate the new size to expand the image
target_width, target_height = canvas_size
aspect_ratio = image.width / image.height
if len(cropped_sides) == 4:
# If the image is cropped on all sides, center crop it to fit the canvas
if aspect_ratio > 1: # Landscape
new_height = target_height
new_width = int(new_height * aspect_ratio)
left = (new_width - target_width) // 2
image = image.resize((new_width, new_height), Image.LANCZOS)
image = image.crop((left, 0, left + target_width, target_height))
else: # Portrait or square
new_width = target_width
new_height = int(new_width / aspect_ratio)
top = (new_height - target_height) // 2
image = image.resize((new_width, new_height), Image.LANCZOS)
image = image.crop((0, top, target_width, top + target_height))
log.append({"action": "center_crop_resize", "new_size": f"{target_width}x{target_height}"})
x, y = 0, 0
elif not cropped_sides:
# If the image is not cropped, expand it from center until it touches the padding
new_height = target_height - padding_top - padding_bottom
new_width = int(new_height * aspect_ratio)
if new_width > target_width - padding_left - padding_right:
# If width exceeds available space, adjust based on width
new_width = target_width - padding_left - padding_right
new_height = int(new_width / aspect_ratio)
# Resize the image
image = image.resize((new_width, new_height), Image.LANCZOS)
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
x = (target_width - new_width) // 2
y = target_height - new_height - padding_bottom
else:
# New logic for handling cropped top and left, or top and right
if set(cropped_sides) == {"top", "left"} or set(cropped_sides) == {"top", "right"}:
new_height = target_height - padding_bottom
new_width = int(new_height * aspect_ratio)
# If new width exceeds canvas width, adjust based on width
if new_width > target_width:
new_width = target_width
new_height = int(new_width / aspect_ratio)
# Resize the image
image = image.resize((new_width, new_height), Image.LANCZOS)
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
# Set position
if "left" in cropped_sides:
x = 0
else: # right in cropped_sides
x = target_width - new_width
y = 0
# If the resized image is taller than the canvas minus padding, crop from the bottom
if new_height > target_height - padding_bottom:
crop_bottom = new_height - (target_height - padding_bottom)
image = image.crop((0, 0, new_width, new_height - crop_bottom))
new_height = target_height - padding_bottom
log.append({"action": "crop_vertical", "bottom_pixels_removed": str(crop_bottom)})
log.append({"action": "position", "x": str(x), "y": str(y)})
elif set(cropped_sides) == {"bottom", "left"} or set(cropped_sides) == {"bottom", "right"}:
# Handle bottom & left or bottom & right cropped images
new_height = target_height - padding_top
new_width = int(new_height * aspect_ratio)
# If new width exceeds canvas width, adjust based on width
if new_width > target_width - padding_left - padding_right:
new_width = target_width - padding_left - padding_right
new_height = int(new_width / aspect_ratio)
# Resize the image without cropping or stretching
image = image.resize((new_width, new_height), Image.LANCZOS)
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
# Set position
if "left" in cropped_sides:
x = 0
else: # right in cropped_sides
x = target_width - new_width
y = target_height - new_height
log.append({"action": "position", "x": str(x), "y": str(y)})
elif set(cropped_sides) == {"bottom", "left", "right"}:
# Expand the image from the center
new_width = target_width
new_height = int(new_width / aspect_ratio)
if new_height < target_height:
new_height = target_height
new_width = int(new_height * aspect_ratio)
image = image.resize((new_width, new_height), Image.LANCZOS)
# Crop to fit the canvas
left = (new_width - target_width) // 2
top = 0
image = image.crop((left, top, left + target_width, top + target_height))
log.append({"action": "expand_and_crop", "new_size": f"{target_width}x{target_height}"})
x, y = 0, 0
elif cropped_sides == ["top"]:
# New logic for handling only top-cropped images
if image.width > image.height:
new_width = target_width
new_height = int(target_width / aspect_ratio)
else:
new_height = target_height - padding_bottom
new_width = int(new_height * aspect_ratio)
# Resize the image
image = image.resize((new_width, new_height), Image.LANCZOS)
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
x = (target_width - new_width) // 2
y = 0 # Align to top
# Apply padding only to non-cropped sides
x = max(padding_left, min(x, target_width - new_width - padding_right))
elif cropped_sides in [["right"], ["left"]]:
# New logic for handling only right-cropped or left-cropped images
if image.width > image.height:
new_width = target_width - max(padding_left, padding_right)
new_height = int(new_width / aspect_ratio)
else:
new_height = target_height - padding_top - padding_bottom
new_width = int(new_height * aspect_ratio)
# Resize the image
image = image.resize((new_width, new_height), Image.LANCZOS)
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
if cropped_sides == ["right"]:
x = target_width - new_width # Align to right
else: # cropped_sides == ["left"]
x = 0 # Align to left
y = target_height - new_height - padding_bottom # Respect bottom padding
# Ensure top padding is respected
if y < padding_top:
y = padding_top
log.append({"action": "position", "x": str(x), "y": str(y)})
elif set(cropped_sides) == {"left", "right"}:
# Logic for handling images cropped on both left and right sides
new_width = target_width # Expand to full width of canvas
# Calculate the aspect ratio of the original image
aspect_ratio = image.width / image.height
# Calculate the new height while maintaining aspect ratio
new_height = int(new_width / aspect_ratio)
# Resize the image
image = image.resize((new_width, new_height), Image.LANCZOS)
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
# Set horizontal position (always 0 as it spans full width)
x = 0
# Calculate vertical position to respect bottom padding
y = target_height - new_height - padding_bottom
# If the resized image is taller than the canvas, crop from the top only
if new_height > target_height - padding_bottom:
crop_top = new_height - (target_height - padding_bottom)
image = image.crop((0, crop_top, new_width, new_height))
new_height = target_height - padding_bottom
y = 0
log.append({"action": "crop_vertical", "top_pixels_removed": str(crop_top)})
else:
# Align the image to the bottom with padding
y = target_height - new_height - padding_bottom
log.append({"action": "position", "x": str(x), "y": str(y)})
elif cropped_sides == ["bottom"]:
# Logic for handling images cropped on the bottom side
# Calculate the aspect ratio of the original image
aspect_ratio = image.width / image.height
if aspect_ratio < 1: # Portrait orientation
new_height = target_height - padding_top # Full height with top padding
new_width = int(new_height * aspect_ratio)
# If the new width exceeds the canvas width, adjust it
if new_width > target_width:
new_width = target_width
new_height = int(new_width / aspect_ratio)
else: # Landscape orientation
new_width = target_width - padding_left - padding_right
new_height = int(new_width / aspect_ratio)
# If the new height exceeds the canvas height, adjust it
if new_height > target_height:
new_height = target_height
new_width = int(new_height * aspect_ratio)
# Resize the image
image = image.resize((new_width, new_height), Image.LANCZOS)
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
# Set horizontal position (centered)
x = (target_width - new_width) // 2
# Set vertical position (touching bottom edge for all cases)
y = target_height - new_height
log.append({"action": "position", "x": str(x), "y": str(y)})
else:
# Use the original resizing logic for other partially cropped images
if image.width > image.height:
new_width = target_width
new_height = int(target_width / aspect_ratio)
else:
new_height = target_height
new_width = int(target_height * aspect_ratio)
# Resize the image
image = image.resize((new_width, new_height), Image.LANCZOS)
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
# Center horizontally for all images
x = (target_width - new_width) // 2
y = target_height - new_height - padding_bottom
# Adjust positions for cropped sides
if "top" in cropped_sides:
y = 0
elif "bottom" in cropped_sides:
y = target_height - new_height
if "left" in cropped_sides:
x = 0
elif "right" in cropped_sides:
x = target_width - new_width
# Apply padding only to non-cropped sides, but keep horizontal centering
if "left" not in cropped_sides and "right" not in cropped_sides:
x = (target_width - new_width) // 2 # Always center horizontally
if "top" not in cropped_sides and "bottom" not in cropped_sides:
y = max(padding_top, min(y, target_height - new_height - padding_bottom))
return log, image, x, y
def get_canvas_size(canvas_size_name):
sizes = {
'Rox': ((1080, 1080), (112, 125, 116, 125)),
'Columbia': ((730, 610), (30, 105, 35, 105)),
'Zalora': ((763, 1100), (50, 50, 200, 50)),
}
return sizes.get(canvas_size_name, ((1080, 1080), (0, 0, 0, 0)))
def process_single_image(image_path, output_folder, bg_method, canvas_size_name, output_format, bg_choice, custom_color, watermark_path=None):
add_padding_line = False
if canvas_size_name == 'Rox':
canvas_size = (1080, 1080)
padding_top = 112
padding_right = 125
padding_bottom = 116
padding_left = 125
elif canvas_size_name == 'Columbia':
canvas_size = (730, 610)
padding_top = 30
padding_right = 105
padding_bottom = 35
padding_left = 105
elif canvas_size_name == 'Zalora':
canvas_size = (763, 1100)
padding_top = 50
padding_right = 50
padding_bottom = 200
padding_left = 50
filename = os.path.basename(image_path)
try:
print(f"Processing image: {filename}")
if bg_method == 'rembg':
image_with_no_bg = remove_background_rembg(image_path) # Placeholder for existing function
elif bg_method == 'bria':
image_with_no_bg = remove_background_bria(image_path) # Placeholder for existing function
temp_image_path = os.path.join(output_folder, f"temp_{filename}")
image_with_no_bg.save(temp_image_path, format='PNG')
log, new_image, x, y = position_logic(temp_image_path, canvas_size, padding_top, padding_right, padding_bottom, padding_left)
# Create a new canvas with the appropriate background
if bg_choice == 'white':
canvas = Image.new("RGBA", canvas_size, "WHITE")
elif bg_choice == 'custom':
canvas = Image.new("RGBA", canvas_size, custom_color)
else: # transparent
canvas = Image.new("RGBA", canvas_size, (0, 0, 0, 0))
# Paste the resized image onto the canvas
canvas.paste(new_image, (x, y), new_image)
log.append({"action": "paste", "position": [str(x), str(y)]})
# Add visible black line for padding when background is not transparent
if add_padding_line:
draw = ImageDraw.Draw(canvas)
draw.rectangle([padding_left, padding_top, canvas_size[0] - padding_right, canvas_size[1] - padding_bottom], outline="black", width=5)
log.append({"action": "add_padding_line"})
output_ext = 'jpg' if output_format == 'JPG' else 'png'
output_filename = f"{os.path.splitext(filename)[0]}.{output_ext}"
output_path = os.path.join(output_folder, output_filename)
# Apply watermark if watermark_path is provided
if watermark_path:
watermark = Image.open(watermark_path).convert("RGBA")
canvas.paste(watermark, (0, 0), watermark)
log.append({"action": "add_watermark"})
if output_format == 'JPG':
canvas.convert('RGB').save(output_path, format='JPEG')
else:
canvas.save(output_path, format='PNG')
os.remove(temp_image_path)
print(f"Processed image path: {output_path}")
return [(output_path, image_path)], log
except Exception as e:
print(f"Error processing {filename}: {e}")
return None, None
def create_canvas(canvas_size, bg_choice, custom_color):
if bg_choice == 'white':
return Image.new("RGBA", canvas_size, "WHITE")
elif bg_choice == 'custom':
return Image.new("RGBA", canvas_size, custom_color)
else: # transparent
return Image.new("RGBA", canvas_size, (0, 0, 0, 0))
def apply_watermark(canvas, watermark_path):
watermark = Image.open(watermark_path).convert("RGBA")
canvas.paste(watermark, (0, 0), watermark)
def save_image(canvas, output_folder, filename, output_format):
output_ext = 'jpg' if output_format == 'JPG' else 'png'
output_path = os.path.join(output_folder, f"{os.path.splitext(filename)[0]}.{output_ext}")
if output_format == 'JPG':
canvas.convert('RGB').save(output_path, format='JPEG')
else:
canvas.save(output_path, format='PNG')
return output_path
def process_images(input_files, bg_method='rembg', watermark_path=None, canvas_size='Rox', output_format='PNG', bg_choice='transparent', custom_color="#ffffff", num_workers=4, progress=gr.Progress()):
start_time = time.time()
output_folder = "processed_images"
if os.path.exists(output_folder):
shutil.rmtree(output_folder)
os.makedirs(output_folder)
processed_images = []
original_images = []
all_logs = []
if isinstance(input_files, str) and input_files.lower().endswith(('.zip', '.rar')):
input_folder = "temp_input"
if os.path.exists(input_folder):
shutil.rmtree(input_folder)
os.makedirs(input_folder)
try:
with zipfile.ZipFile(input_files, 'r') as zip_ref:
zip_ref.extractall(input_folder)
except zipfile.BadZipFile as e:
print(f"Error extracting zip file: {e}")
return [], None, 0
image_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif', '.webp'))]
elif isinstance(input_files, list):
image_files = input_files
else:
image_files = [input_files]
total_images = len(image_files)
print(f"Total images to process: {total_images}")
avg_processing_time = 0
with ThreadPoolExecutor(max_workers=num_workers) as executor:
future_to_image = {executor.submit(process_single_image, image_path, output_folder, bg_method, canvas_size, output_format, bg_choice, custom_color, watermark_path): image_path for image_path in image_files}
for idx, future in enumerate(future_to_image):
try:
start_time_image = time.time()
result, log = future.result()
end_time_image = time.time()
image_processing_time = end_time_image - start_time_image
# Update average processing time
avg_processing_time = (avg_processing_time * idx + image_processing_time) / (idx + 1)
if result:
processed_images.extend(result)
original_images.append(future_to_image[future])
all_logs.append({os.path.basename(future_to_image[future]): log})
# Estimate remaining time
remaining_images = total_images - (idx + 1)
estimated_remaining_time = remaining_images * avg_processing_time
progress((idx + 1) / total_images, f"{idx + 1}/{total_images} images processed. Estimated time remaining: {estimated_remaining_time:.2f} seconds")
except Exception as e:
print(f"Error processing image {future_to_image[future]}: {e}")
output_zip_path = "processed_images.zip"
with zipfile.ZipFile(output_zip_path, 'w') as zipf:
for file, _ in processed_images:
zipf.write(file, os.path.basename(file))
# Write the comprehensive log for all images
with open(os.path.join(output_folder, 'process_log.json'), 'w') as log_file:
json.dump(all_logs, log_file, indent=4)
print("Comprehensive log saved to", os.path.join(output_folder, 'process_log.json'))
end_time = time.time()
processing_time = end_time - start_time
print(f"Processing time: {processing_time} seconds")
return original_images, processed_images, output_zip_path, processing_time
def extract_image_files(input_files):
if isinstance(input_files, str) and input_files.lower().endswith(('.zip', '.rar')):
input_folder = "temp_input"
if os.path.exists(input_folder):
shutil.rmtree(input_folder)
os.makedirs(input_folder)
with zipfile.ZipFile(input_files, 'r') as zip_ref:
zip_ref.extractall(input_folder)
return [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif', '.webp'))]
elif isinstance(input_files, list):
return input_files
else:
return [input_files]
def create_output_zip(processed_images):
output_zip_path = "processed_images.zip"
with zipfile.ZipFile(output_zip_path, 'w') as zipf:
for file, _ in processed_images:
zipf.write(file, os.path.basename(file))
return output_zip_path
def save_log(all_logs, output_folder):
with open(os.path.join(output_folder, 'process_log.json'), 'w') as log_file:
json.dump(all_logs, log_file, indent=4)
print("Comprehensive log saved to", os.path.join(output_folder, 'process_log.json'))
def gradio_interface(input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers):
progress = gr.Progress()
watermark_path = watermark.name if watermark else None
if isinstance(input_files, str) and input_files.lower().endswith(('.zip', '.rar')):
return process_images(input_files, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress)
elif isinstance(input_files, list):
return process_images(input_files, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress)
else:
return process_images(input_files.name, bg_method, watermark_path, canvas_size, output_format, bg_choice, custom_color, num_workers, progress)
def show_color_picker(bg_choice):
if bg_choice == 'custom':
return gr.update(visible=True)
return gr.update(visible=False)
def update_compare(evt: gr.SelectData):
if isinstance(evt.value, dict) and 'caption' in evt.value:
input_path = evt.value['caption']
output_path = evt.value['image']['path']
input_path = input_path.split("Input: ")[-1]
original_img = Image.open(input_path)
processed_img = Image.open(output_path)
original_ratio = f"{original_img.width}x{original_img.height}"
processed_ratio = f"{processed_img.width}x{processed_img.height}"
return gr.update(value=input_path), gr.update(value=output_path), gr.update(value=original_ratio), gr.update(value=processed_ratio)
else:
print("No caption found in selection")
return gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None)
def process(input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers):
_, processed_images, zip_path, time_taken = gradio_interface(input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers)
processed_images_with_captions = [(img, f"Input: {caption}") for img, caption in processed_images]
return processed_images_with_captions, zip_path, f"{time_taken:.2f} seconds"
with gr.Blocks(theme="NoCrypt/miku@1.2.2") as iface:
gr.Markdown("# Image Background Removal and Resizing with Optional Watermark")
gr.Markdown("Choose to upload multiple images or a ZIP/RAR file, select the crop mode, optionally upload a watermark image, and choose the output format.")
# Fitur Text to Image
gr.Markdown("# Text to Image Feature")
with gr.Row():
prompt_input = gr.Textbox(label="Enter your prompt for image generation:")
generate_button = gr.Button("Generate Image")
output_image = gr.Image(label="Generated Image")
download_button = gr.File(label="Download Generated Image", type="filepath")
generate_button.click(text_to_image, inputs=prompt_input, outputs=[output_image, download_button])
# Fitur Text Image to Image
gr.Markdown("# Text Image to Image Feature")
with gr.Row():
input_image = gr.Image(label="Upload Image for Modification", type="pil")
prompt_modification = gr.Textbox(label="Enter your prompt for modification:")
modify_button = gr.Button("Modify Image")
modified_output_image = gr.Image(label="Modified Image")
download_modified_button = gr.File(label="Download Modified Image", type="filepath")
modify_button.click(text_image_to_image, inputs=[input_image, prompt_modification], outputs=[modified_output_image, download_modified_button])
with gr.Row():
input_files = gr.File(label="Upload Image or ZIP/RAR file", file_types=[".zip", ".rar", "image"], interactive=True)
watermark = gr.File(label="Upload Watermark Image (Optional)", file_types=[".png"])
with gr.Row():
canvas_size = gr.Radio(choices=["Rox", "Columbia", "Zalora"], label="Canvas Size", value="Rox")
output_format = gr.Radio(choices=["PNG", "JPG"], label="Output Format", value="JPG")
num_workers = gr.Slider(minimum=1, maximum=16, step=1, label="Number of Workers", value=5)
with gr.Row():
bg_method = gr.Radio(choices=["bria", "rembg"], label="Background Removal Method", value="rembg")
bg_choice = gr.Radio(choices=["transparent", "white", "custom"], label="Background Choice", value="white")
custom_color = gr.ColorPicker(label="Custom Background Color", value="#ffffff", visible=False)
process_button = gr.Button("Process Images")
with gr.Row():
input_image = gr.File(label="Upload Image", file_types=["image"])
prompt = gr.Textbox(label="Prompt for Image Modification")
process_button = gr.Button("Generate Image")
output_image = gr.Image(label="Generated Image")
process_button.click(gradio_interface, inputs=[input_image, prompt], outputs=[output_image])
with gr.Row():
gallery_processed = gr.Gallery(label="Processed Images")
with gr.Row():
image_original = gr.Image(label="Original Images", interactive=False)
image_processed = gr.Image(label="Processed Images", interactive=False)
with gr.Row():
original_ratio = gr.Textbox(label="Original Ratio")
processed_ratio = gr.Textbox(label="Processed Ratio")
with gr.Row():
output_zip = gr.File(label="Download Processed Images as ZIP")
processing_time = gr.Textbox(label="Processing Time (seconds)")
bg_choice.change(show_color_picker, inputs=bg_choice, outputs=custom_color)
process_button.click(process, inputs=[input_files, bg_method, watermark, canvas_size, output_format, bg_choice, custom_color, num_workers], outputs=[gallery_processed, output_zip, processing_time])
gallery_processed.select(update_compare, outputs=[image_original, image_processed, original_ratio, processed_ratio])
iface.launch(share=True)