File size: 11,330 Bytes
dbac20f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Copyright 2020 Ross Wightman
# Modified Model definition
from collections import OrderedDict
from functools import partial
import torch
import torch.nn as nn
from timm.layers import trunc_normal_
from mmaudio.ext.synchformer import vit_helper
class VisionTransformer(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage """
def __init__(self, cfg):
super().__init__()
self.img_size = cfg.DATA.TRAIN_CROP_SIZE
self.patch_size = cfg.VIT.PATCH_SIZE
self.in_chans = cfg.VIT.CHANNELS
if cfg.TRAIN.DATASET == "Epickitchens":
self.num_classes = [97, 300]
else:
self.num_classes = cfg.MODEL.NUM_CLASSES
self.embed_dim = cfg.VIT.EMBED_DIM
self.depth = cfg.VIT.DEPTH
self.num_heads = cfg.VIT.NUM_HEADS
self.mlp_ratio = cfg.VIT.MLP_RATIO
self.qkv_bias = cfg.VIT.QKV_BIAS
self.drop_rate = cfg.VIT.DROP
self.drop_path_rate = cfg.VIT.DROP_PATH
self.head_dropout = cfg.VIT.HEAD_DROPOUT
self.video_input = cfg.VIT.VIDEO_INPUT
self.temporal_resolution = cfg.VIT.TEMPORAL_RESOLUTION
self.use_mlp = cfg.VIT.USE_MLP
self.num_features = self.embed_dim
norm_layer = partial(nn.LayerNorm, eps=1e-6)
self.attn_drop_rate = cfg.VIT.ATTN_DROPOUT
self.head_act = cfg.VIT.HEAD_ACT
self.cfg = cfg
# Patch Embedding
self.patch_embed = vit_helper.PatchEmbed(img_size=224,
patch_size=self.patch_size,
in_chans=self.in_chans,
embed_dim=self.embed_dim)
# 3D Patch Embedding
self.patch_embed_3d = vit_helper.PatchEmbed3D(img_size=self.img_size,
temporal_resolution=self.temporal_resolution,
patch_size=self.patch_size,
in_chans=self.in_chans,
embed_dim=self.embed_dim,
z_block_size=self.cfg.VIT.PATCH_SIZE_TEMP)
self.patch_embed_3d.proj.weight.data = torch.zeros_like(
self.patch_embed_3d.proj.weight.data)
# Number of patches
if self.video_input:
num_patches = self.patch_embed.num_patches * self.temporal_resolution
else:
num_patches = self.patch_embed.num_patches
self.num_patches = num_patches
# CLS token
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
trunc_normal_(self.cls_token, std=.02)
# Positional embedding
self.pos_embed = nn.Parameter(
torch.zeros(1, self.patch_embed.num_patches + 1, self.embed_dim))
self.pos_drop = nn.Dropout(p=cfg.VIT.POS_DROPOUT)
trunc_normal_(self.pos_embed, std=.02)
if self.cfg.VIT.POS_EMBED == "joint":
self.st_embed = nn.Parameter(torch.zeros(1, num_patches + 1, self.embed_dim))
trunc_normal_(self.st_embed, std=.02)
elif self.cfg.VIT.POS_EMBED == "separate":
self.temp_embed = nn.Parameter(torch.zeros(1, self.temporal_resolution, self.embed_dim))
# Layer Blocks
dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, self.depth)]
if self.cfg.VIT.ATTN_LAYER == "divided":
self.blocks = nn.ModuleList([
vit_helper.DividedSpaceTimeBlock(
attn_type=cfg.VIT.ATTN_LAYER,
dim=self.embed_dim,
num_heads=self.num_heads,
mlp_ratio=self.mlp_ratio,
qkv_bias=self.qkv_bias,
drop=self.drop_rate,
attn_drop=self.attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
) for i in range(self.depth)
])
else:
self.blocks = nn.ModuleList([
vit_helper.Block(attn_type=cfg.VIT.ATTN_LAYER,
dim=self.embed_dim,
num_heads=self.num_heads,
mlp_ratio=self.mlp_ratio,
qkv_bias=self.qkv_bias,
drop=self.drop_rate,
attn_drop=self.attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
use_original_code=self.cfg.VIT.USE_ORIGINAL_TRAJ_ATTN_CODE)
for i in range(self.depth)
])
self.norm = norm_layer(self.embed_dim)
# MLP head
if self.use_mlp:
hidden_dim = self.embed_dim
if self.head_act == 'tanh':
# logging.info("Using TanH activation in MLP")
act = nn.Tanh()
elif self.head_act == 'gelu':
# logging.info("Using GELU activation in MLP")
act = nn.GELU()
else:
# logging.info("Using ReLU activation in MLP")
act = nn.ReLU()
self.pre_logits = nn.Sequential(
OrderedDict([
('fc', nn.Linear(self.embed_dim, hidden_dim)),
('act', act),
]))
else:
self.pre_logits = nn.Identity()
# Classifier Head
self.head_drop = nn.Dropout(p=self.head_dropout)
if isinstance(self.num_classes, (list, )) and len(self.num_classes) > 1:
for a, i in enumerate(range(len(self.num_classes))):
setattr(self, "head%d" % a, nn.Linear(self.embed_dim, self.num_classes[i]))
else:
self.head = nn.Linear(self.embed_dim,
self.num_classes) if self.num_classes > 0 else nn.Identity()
# Initialize weights
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
if self.cfg.VIT.POS_EMBED == "joint":
return {'pos_embed', 'cls_token', 'st_embed'}
else:
return {'pos_embed', 'cls_token', 'temp_embed'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = (nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity())
def forward_features(self, x):
# if self.video_input:
# x = x[0]
B = x.shape[0]
# Tokenize input
# if self.cfg.VIT.PATCH_SIZE_TEMP > 1:
# for simplicity of mapping between content dimensions (input x) and token dims (after patching)
# we use the same trick as for AST (see modeling_ast.ASTModel.forward for the details):
# apply patching on input
x = self.patch_embed_3d(x)
tok_mask = None
# else:
# tok_mask = None
# # 2D tokenization
# if self.video_input:
# x = x.permute(0, 2, 1, 3, 4)
# (B, T, C, H, W) = x.shape
# x = x.reshape(B * T, C, H, W)
# x = self.patch_embed(x)
# if self.video_input:
# (B2, T2, D2) = x.shape
# x = x.reshape(B, T * T2, D2)
# Append CLS token
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# if tok_mask is not None:
# # prepend 1(=keep) to the mask to account for the CLS token as well
# tok_mask = torch.cat((torch.ones_like(tok_mask[:, [0]]), tok_mask), dim=1)
# Interpolate positinoal embeddings
# if self.cfg.DATA.TRAIN_CROP_SIZE != 224:
# pos_embed = self.pos_embed
# N = pos_embed.shape[1] - 1
# npatch = int((x.size(1) - 1) / self.temporal_resolution)
# class_emb = pos_embed[:, 0]
# pos_embed = pos_embed[:, 1:]
# dim = x.shape[-1]
# pos_embed = torch.nn.functional.interpolate(
# pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
# scale_factor=math.sqrt(npatch / N),
# mode='bicubic',
# )
# pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
# new_pos_embed = torch.cat((class_emb.unsqueeze(0), pos_embed), dim=1)
# else:
new_pos_embed = self.pos_embed
npatch = self.patch_embed.num_patches
# Add positional embeddings to input
if self.video_input:
if self.cfg.VIT.POS_EMBED == "separate":
cls_embed = self.pos_embed[:, 0, :].unsqueeze(1)
tile_pos_embed = new_pos_embed[:, 1:, :].repeat(1, self.temporal_resolution, 1)
tile_temporal_embed = self.temp_embed.repeat_interleave(npatch, 1)
total_pos_embed = tile_pos_embed + tile_temporal_embed
total_pos_embed = torch.cat([cls_embed, total_pos_embed], dim=1)
x = x + total_pos_embed
elif self.cfg.VIT.POS_EMBED == "joint":
x = x + self.st_embed
else:
# image input
x = x + new_pos_embed
# Apply positional dropout
x = self.pos_drop(x)
# Encoding using transformer layers
for i, blk in enumerate(self.blocks):
x = blk(x,
seq_len=npatch,
num_frames=self.temporal_resolution,
approx=self.cfg.VIT.APPROX_ATTN_TYPE,
num_landmarks=self.cfg.VIT.APPROX_ATTN_DIM,
tok_mask=tok_mask)
### v-iashin: I moved it to the forward pass
# x = self.norm(x)[:, 0]
# x = self.pre_logits(x)
###
return x, tok_mask
# def forward(self, x):
# x = self.forward_features(x)
# ### v-iashin: here. This should leave the same forward output as before
# x = self.norm(x)[:, 0]
# x = self.pre_logits(x)
# ###
# x = self.head_drop(x)
# if isinstance(self.num_classes, (list, )) and len(self.num_classes) > 1:
# output = []
# for head in range(len(self.num_classes)):
# x_out = getattr(self, "head%d" % head)(x)
# if not self.training:
# x_out = torch.nn.functional.softmax(x_out, dim=-1)
# output.append(x_out)
# return output
# else:
# x = self.head(x)
# if not self.training:
# x = torch.nn.functional.softmax(x, dim=-1)
# return x
|