|
|
|
|
|
|
|
|
|
|
|
|
|
"""Improved diffusion model architecture proposed in the paper |
|
"Analyzing and Improving the Training Dynamics of Diffusion Models".""" |
|
|
|
import numpy as np |
|
import torch |
|
|
|
|
|
|
|
|
|
|
|
_constant_cache = dict() |
|
|
|
|
|
def constant(value, shape=None, dtype=None, device=None, memory_format=None): |
|
value = np.asarray(value) |
|
if shape is not None: |
|
shape = tuple(shape) |
|
if dtype is None: |
|
dtype = torch.get_default_dtype() |
|
if device is None: |
|
device = torch.device('cpu') |
|
if memory_format is None: |
|
memory_format = torch.contiguous_format |
|
|
|
key = (value.shape, value.dtype, value.tobytes(), shape, dtype, device, memory_format) |
|
tensor = _constant_cache.get(key, None) |
|
if tensor is None: |
|
tensor = torch.as_tensor(value.copy(), dtype=dtype, device=device) |
|
if shape is not None: |
|
tensor, _ = torch.broadcast_tensors(tensor, torch.empty(shape)) |
|
tensor = tensor.contiguous(memory_format=memory_format) |
|
_constant_cache[key] = tensor |
|
return tensor |
|
|
|
|
|
def const_like(ref, value, shape=None, dtype=None, device=None, memory_format=None): |
|
if dtype is None: |
|
dtype = ref.dtype |
|
if device is None: |
|
device = ref.device |
|
return constant(value, shape=shape, dtype=dtype, device=device, memory_format=memory_format) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def normalize(x, dim=None, eps=1e-4): |
|
if dim is None: |
|
dim = list(range(1, x.ndim)) |
|
norm = torch.linalg.vector_norm(x, dim=dim, keepdim=True, dtype=torch.float32) |
|
norm = torch.add(eps, norm, alpha=np.sqrt(norm.numel() / x.numel())) |
|
return x / norm.to(x.dtype) |
|
|
|
|
|
class Normalize(torch.nn.Module): |
|
|
|
def __init__(self, dim=None, eps=1e-4): |
|
super().__init__() |
|
self.dim = dim |
|
self.eps = eps |
|
|
|
def forward(self, x): |
|
return normalize(x, dim=self.dim, eps=self.eps) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def resample(x, f=[1, 1], mode='keep'): |
|
if mode == 'keep': |
|
return x |
|
f = np.float32(f) |
|
assert f.ndim == 1 and len(f) % 2 == 0 |
|
pad = (len(f) - 1) // 2 |
|
f = f / f.sum() |
|
f = np.outer(f, f)[np.newaxis, np.newaxis, :, :] |
|
f = const_like(x, f) |
|
c = x.shape[1] |
|
if mode == 'down': |
|
return torch.nn.functional.conv2d(x, |
|
f.tile([c, 1, 1, 1]), |
|
groups=c, |
|
stride=2, |
|
padding=(pad, )) |
|
assert mode == 'up' |
|
return torch.nn.functional.conv_transpose2d(x, (f * 4).tile([c, 1, 1, 1]), |
|
groups=c, |
|
stride=2, |
|
padding=(pad, )) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def mp_silu(x): |
|
return torch.nn.functional.silu(x) / 0.596 |
|
|
|
|
|
class MPSiLU(torch.nn.Module): |
|
|
|
def forward(self, x): |
|
return mp_silu(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def mp_sum(a, b, t=0.5): |
|
return a.lerp(b, t) / np.sqrt((1 - t)**2 + t**2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def mp_cat(a, b, dim=1, t=0.5): |
|
Na = a.shape[dim] |
|
Nb = b.shape[dim] |
|
C = np.sqrt((Na + Nb) / ((1 - t)**2 + t**2)) |
|
wa = C / np.sqrt(Na) * (1 - t) |
|
wb = C / np.sqrt(Nb) * t |
|
return torch.cat([wa * a, wb * b], dim=dim) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MPConv1D(torch.nn.Module): |
|
|
|
def __init__(self, in_channels, out_channels, kernel_size): |
|
super().__init__() |
|
self.out_channels = out_channels |
|
self.weight = torch.nn.Parameter(torch.randn(out_channels, in_channels, kernel_size)) |
|
|
|
self.weight_norm_removed = False |
|
|
|
def forward(self, x, gain=1): |
|
assert self.weight_norm_removed, 'call remove_weight_norm() before inference' |
|
|
|
w = self.weight * gain |
|
if w.ndim == 2: |
|
return x @ w.t() |
|
assert w.ndim == 3 |
|
return torch.nn.functional.conv1d(x, w, padding=(w.shape[-1] // 2, )) |
|
|
|
def remove_weight_norm(self): |
|
w = self.weight.to(torch.float32) |
|
w = normalize(w) |
|
w = w / np.sqrt(w[0].numel()) |
|
w = w.to(self.weight.dtype) |
|
self.weight.data.copy_(w) |
|
|
|
self.weight_norm_removed = True |
|
return self |
|
|