File size: 6,008 Bytes
ec3b96a
1f2f15c
 
166b6db
2509eb1
 
1f2f15c
547b516
a7253cf
1f2f15c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8182a62
 
 
 
 
 
 
 
 
 
a7253cf
8182a62
 
1f2f15c
 
 
 
 
 
 
 
 
 
 
 
 
8182a62
 
1f2f15c
 
8182a62
 
 
 
 
 
93780aa
 
 
 
 
 
3566189
 
b879202
1f2f15c
 
77e039c
ec3b96a
 
1f2f15c
ec3b96a
 
 
 
 
e4b31e4
 
8182a62
3566189
88a2efd
 
 
 
 
 
 
 
 
8182a62
682806c
88a2efd
b879202
 
 
 
 
1f2f15c
8182a62
b879202
1f2f15c
b879202
 
 
 
 
1f2f15c
8182a62
1f2f15c
 
ec3b96a
1f2f15c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import gradio as gr
from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
from huggingface_hub import hf_hub_download
import numpy as np
import math
import spaces 
import torch 
from PIL import Image

edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
normal_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl.safetensors")

def set_timesteps_patched(self, num_inference_steps: int, device = None):
    self.num_inference_steps = num_inference_steps
    
    ramp = np.linspace(0, 1, self.num_inference_steps)
    sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
    
    sigmas = (sigmas).to(dtype=torch.float32, device=device)
    self.timesteps = self.precondition_noise(sigmas)
    
    self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
    self._step_index = None
    self._begin_index = None
    self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication

def resize_image(image, resolution):
    original_width, original_height = image.size
    
    if original_width > original_height:
        new_width = resolution
        new_height = int((resolution / original_width) * original_height)
    else:
        new_height = resolution
        new_width = int((resolution / original_height) * original_width)
    
    resized_img = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
    return resized_img

EDMEulerScheduler.set_timesteps = set_timesteps_patched

pipe_edit = CosStableDiffusionXLInstructPix2PixPipeline.from_single_file(
    edit_file, num_in_channels=8
)
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
pipe_edit.to("cuda")

pipe_normal = StableDiffusionXLPipeline.from_single_file(normal_file, torch_dtype=torch.float16)
pipe_normal.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
pipe_normal.to("cuda")

@spaces.GPU
def run_normal(prompt, negative_prompt="", guidance_scale=7, steps=20, progress=gr.Progress(track_tqdm=True)):
    return pipe_normal(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=steps).images[0]

@spaces.GPU
def run_edit(image, prompt, negative_prompt="", guidance_scale=7, steps=20, progress=gr.Progress(track_tqdm=True)):
    image = resize_image(image, 1024)
    print("Image resized to ", image.size)
    width, height = image.size
    #image.resize((resolution, resolution))
    return pipe_edit(prompt=prompt,image=image,height=height,width=width,negative_prompt=negative_prompt, guidance_scale=guidance_scale,num_inference_steps=steps).images[0]
css = '''
.gradio-container{
max-width: 768px !important;
margin: 0 auto;
}
'''
normal_examples = ["portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography", "backlit photography of a dog", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece"]
edit_examples = [["mountain.png", "make it a cloudy day"], ["painting.png", "make the earring fancier"]]
with gr.Blocks(css=css) as demo:
    gr.Markdown('''# CosXL demo
    Unofficial demo for CosXL, a SDXL model tuned to produce full color range images. CosXL Edit allows you to perform edits on images. Both have a [non-commercial community license](https://huggingface.co/stabilityai/cosxl/blob/main/LICENSE)
    ''')
    with gr.Tab("CosXL Edit"):
      with gr.Group():
          image_edit = gr.Image(label="Image you would like to edit", type="pil")
          with gr.Row():
            prompt_edit = gr.Textbox(show_label=False, scale=4, placeholder="Edit instructions, e.g.: Make the day cloudy")
            button_edit = gr.Button("Generate", min_width=120)
          output_edit = gr.Image(label="Your result image", interactive=False)
          with gr.Accordion("Advanced Settings", open=False):
            negative_prompt_edit = gr.Textbox(label="Negative Prompt")
            guidance_scale_edit = gr.Number(label="Guidance Scale", value=7)
            steps_edit = gr.Slider(label="Steps", minimum=10, maximum=50, value=20)
      gr.Examples(examples=edit_examples, fn=run_edit, inputs=[image_edit, prompt_edit], outputs=[output_edit], cache_examples=True)
    with gr.Tab("CosXL"):
      with gr.Group():
          with gr.Row():
            prompt_normal = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt, e.g.: backlit photography of a dog")
            button_normal = gr.Button("Generate", min_width=120)
          output_normal = gr.Image(label="Your result image", interactive=False)
          with gr.Accordion("Advanced Settings", open=False):
            negative_prompt_normal = gr.Textbox(label="Negative Prompt")
            guidance_scale_normal = gr.Number(label="Guidance Scale", value=7)
            steps_normal = gr.Slider(label="Steps", minimum=10, maximum=50, value=20)
      gr.Examples(examples=normal_examples, fn=run_normal, inputs=[prompt_normal], outputs=[output_normal], cache_examples="lazy") 
    
    gr.on(
        triggers=[
            button_normal.click,
            prompt_normal.submit
        ],
        fn=run_normal,
        inputs=[prompt_normal, negative_prompt_normal, guidance_scale_normal, steps_normal],
        outputs=[output_normal],
    )
    gr.on(
        triggers=[
            button_edit.click,
            prompt_edit.submit
        ],
        fn=run_edit,
        inputs=[image_edit, prompt_edit, negative_prompt_edit, guidance_scale_edit, steps_edit],
        outputs=[output_edit]
    )
if __name__ == "__main__":
    demo.launch(share=True)