multimodalart HF staff commited on
Commit
13334d2
1 Parent(s): 3f46c2e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -3
app.py CHANGED
@@ -1,5 +1,5 @@
1
  import gradio as gr
2
- from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline
3
  from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
4
  from huggingface_hub import hf_hub_download
5
  import numpy as np
@@ -40,13 +40,15 @@ def resize_image(image, resolution):
40
 
41
  EDMEulerScheduler.set_timesteps = set_timesteps_patched
42
 
 
 
43
  pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file(
44
- edit_file, num_in_channels=8, is_cosxl_edit=True, torch_dtype=torch.float16
45
  )
46
  pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
47
  pipe_edit.to("cuda")
48
 
49
- pipe_normal = StableDiffusionXLPipeline.from_single_file(normal_file, torch_dtype=torch.float16)
50
  pipe_normal.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
51
  pipe_normal.to("cuda")
52
 
 
1
  import gradio as gr
2
+ from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL
3
  from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
4
  from huggingface_hub import hf_hub_download
5
  import numpy as np
 
40
 
41
  EDMEulerScheduler.set_timesteps = set_timesteps_patched
42
 
43
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
44
+
45
  pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file(
46
+ edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16,
47
  )
48
  pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
49
  pipe_edit.to("cuda")
50
 
51
+ pipe_normal = StableDiffusionXLPipeline.from_single_file(normal_file, torch_dtype=torch.float16, vae=vae)
52
  pipe_normal.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
53
  pipe_normal.to("cuda")
54