Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers.utils import load_image
|
4 |
+
from controlnet_flux import FluxControlNetModel
|
5 |
+
from transformer_flux import FluxTransformer2DModel
|
6 |
+
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
|
7 |
+
from PIL import Image, ImageDraw
|
8 |
+
|
9 |
+
# Load models
|
10 |
+
controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha", torch_dtype=torch.bfloat16)
|
11 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
12 |
+
"black-forest-labs/FLUX.1-dev", subfolder='transformer', torch_dtype=torch.bfloat16
|
13 |
+
)
|
14 |
+
pipe = FluxControlNetInpaintingPipeline.from_pretrained(
|
15 |
+
"black-forest-labs/FLUX.1-dev",
|
16 |
+
controlnet=controlnet,
|
17 |
+
transformer=transformer,
|
18 |
+
torch_dtype=torch.bfloat16
|
19 |
+
).to("cuda")
|
20 |
+
pipe.transformer.to(torch.bfloat16)
|
21 |
+
pipe.controlnet.to(torch.bfloat16)
|
22 |
+
|
23 |
+
def prepare_image_and_mask(image, width, height, overlap_percentage):
|
24 |
+
# Resize the input image to fit within the target size
|
25 |
+
image.thumbnail((width, height), Image.LANCZOS)
|
26 |
+
|
27 |
+
# Create a new white background image of the target size
|
28 |
+
background = Image.new('RGB', (width, height), (255, 255, 255))
|
29 |
+
|
30 |
+
# Paste the resized image onto the background
|
31 |
+
offset = ((width - image.width) // 2, (height - image.height) // 2)
|
32 |
+
background.paste(image, offset)
|
33 |
+
|
34 |
+
# Create a mask
|
35 |
+
mask = Image.new('L', (width, height), 255)
|
36 |
+
draw = ImageDraw.Draw(mask)
|
37 |
+
|
38 |
+
# Calculate the overlap area
|
39 |
+
overlap_x = int(image.width * overlap_percentage / 100)
|
40 |
+
overlap_y = int(image.height * overlap_percentage / 100)
|
41 |
+
|
42 |
+
# Draw the mask (black area is where we want to inpaint)
|
43 |
+
draw.rectangle([
|
44 |
+
(offset[0] + overlap_x, offset[1] + overlap_y),
|
45 |
+
(offset[0] + image.width - overlap_x, offset[1] + image.height - overlap_y)
|
46 |
+
], fill=0)
|
47 |
+
|
48 |
+
return background, mask
|
49 |
+
|
50 |
+
def inpaint(image, prompt, width, height, overlap_percentage, num_inference_steps, guidance_scale):
|
51 |
+
# Prepare image and mask
|
52 |
+
image, mask = prepare_image_and_mask(image, width, height, overlap_percentage)
|
53 |
+
|
54 |
+
# Set up generator for reproducibility
|
55 |
+
generator = torch.Generator(device="cuda").manual_seed(42)
|
56 |
+
|
57 |
+
# Run inpainting
|
58 |
+
result = pipe(
|
59 |
+
prompt=prompt,
|
60 |
+
height=height,
|
61 |
+
width=width,
|
62 |
+
control_image=image,
|
63 |
+
control_mask=mask,
|
64 |
+
num_inference_steps=num_inference_steps,
|
65 |
+
generator=generator,
|
66 |
+
controlnet_conditioning_scale=0.9,
|
67 |
+
guidance_scale=guidance_scale,
|
68 |
+
negative_prompt="",
|
69 |
+
true_guidance_scale=guidance_scale
|
70 |
+
).images[0]
|
71 |
+
|
72 |
+
return result
|
73 |
+
|
74 |
+
# Gradio interface
|
75 |
+
with gr.Blocks() as demo:
|
76 |
+
gr.Markdown("# FLUX Outpainting Demo")
|
77 |
+
with gr.Row():
|
78 |
+
with gr.Column():
|
79 |
+
input_image = gr.Image(type="pil", label="Input Image")
|
80 |
+
prompt_input = gr.Textbox(label="Prompt")
|
81 |
+
width_slider = gr.Slider(label="Width", minimum=256, maximum=1024, step=64, value=768)
|
82 |
+
height_slider = gr.Slider(label="Height", minimum=256, maximum=1024, step=64, value=768)
|
83 |
+
overlap_slider = gr.Slider(label="Overlap Percentage", minimum=0, maximum=50, step=1, value=10)
|
84 |
+
steps_slider = gr.Slider(label="Inference Steps", minimum=1, maximum=100, step=1, value=28)
|
85 |
+
guidance_slider = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=10.0, step=0.1, value=3.5)
|
86 |
+
run_button = gr.Button("Generate")
|
87 |
+
with gr.Column():
|
88 |
+
output_image = gr.Image(label="Output Image")
|
89 |
+
|
90 |
+
run_button.click(
|
91 |
+
fn=inpaint,
|
92 |
+
inputs=[input_image, prompt_input, width_slider, height_slider, overlap_slider, steps_slider, guidance_slider],
|
93 |
+
outputs=output_image
|
94 |
+
)
|
95 |
+
|
96 |
+
demo.launch()
|