File size: 15,344 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import torch

class LatentFormat:
    scale_factor = 1.0
    latent_channels = 4
    latent_rgb_factors = None
    latent_rgb_factors_bias = None
    taesd_decoder_name = None

    def process_in(self, latent):
        return latent * self.scale_factor

    def process_out(self, latent):
        return latent / self.scale_factor

class SD15(LatentFormat):
    def __init__(self, scale_factor=0.18215):
        self.scale_factor = scale_factor
        self.latent_rgb_factors = [
                    #   R        G        B
                    [ 0.3512,  0.2297,  0.3227],
                    [ 0.3250,  0.4974,  0.2350],
                    [-0.2829,  0.1762,  0.2721],
                    [-0.2120, -0.2616, -0.7177]
                ]
        self.taesd_decoder_name = "taesd_decoder"

class SDXL(LatentFormat):
    scale_factor = 0.13025

    def __init__(self):
        self.latent_rgb_factors = [
                    #   R        G        B
                    [ 0.3651,  0.4232,  0.4341],
                    [-0.2533, -0.0042,  0.1068],
                    [ 0.1076,  0.1111, -0.0362],
                    [-0.3165, -0.2492, -0.2188]
                ]
        self.latent_rgb_factors_bias = [ 0.1084, -0.0175, -0.0011]

        self.taesd_decoder_name = "taesdxl_decoder"

class SDXL_Playground_2_5(LatentFormat):
    def __init__(self):
        self.scale_factor = 0.5
        self.latents_mean = torch.tensor([-1.6574, 1.886, -1.383, 2.5155]).view(1, 4, 1, 1)
        self.latents_std = torch.tensor([8.4927, 5.9022, 6.5498, 5.2299]).view(1, 4, 1, 1)

        self.latent_rgb_factors = [
                    #   R        G        B
                    [ 0.3920,  0.4054,  0.4549],
                    [-0.2634, -0.0196,  0.0653],
                    [ 0.0568,  0.1687, -0.0755],
                    [-0.3112, -0.2359, -0.2076]
                ]
        self.taesd_decoder_name = "taesdxl_decoder"

    def process_in(self, latent):
        latents_mean = self.latents_mean.to(latent.device, latent.dtype)
        latents_std = self.latents_std.to(latent.device, latent.dtype)
        return (latent - latents_mean) * self.scale_factor / latents_std

    def process_out(self, latent):
        latents_mean = self.latents_mean.to(latent.device, latent.dtype)
        latents_std = self.latents_std.to(latent.device, latent.dtype)
        return latent * latents_std / self.scale_factor + latents_mean


class SD_X4(LatentFormat):
    def __init__(self):
        self.scale_factor = 0.08333
        self.latent_rgb_factors = [
            [-0.2340, -0.3863, -0.3257],
            [ 0.0994,  0.0885, -0.0908],
            [-0.2833, -0.2349, -0.3741],
            [ 0.2523, -0.0055, -0.1651]
        ]

class SC_Prior(LatentFormat):
    latent_channels = 16
    def __init__(self):
        self.scale_factor = 1.0
        self.latent_rgb_factors = [
            [-0.0326, -0.0204, -0.0127],
            [-0.1592, -0.0427,  0.0216],
            [ 0.0873,  0.0638, -0.0020],
            [-0.0602,  0.0442,  0.1304],
            [ 0.0800, -0.0313, -0.1796],
            [-0.0810, -0.0638, -0.1581],
            [ 0.1791,  0.1180,  0.0967],
            [ 0.0740,  0.1416,  0.0432],
            [-0.1745, -0.1888, -0.1373],
            [ 0.2412,  0.1577,  0.0928],
            [ 0.1908,  0.0998,  0.0682],
            [ 0.0209,  0.0365, -0.0092],
            [ 0.0448, -0.0650, -0.1728],
            [-0.1658, -0.1045, -0.1308],
            [ 0.0542,  0.1545,  0.1325],
            [-0.0352, -0.1672, -0.2541]
        ]

class SC_B(LatentFormat):
    def __init__(self):
        self.scale_factor = 1.0 / 0.43
        self.latent_rgb_factors = [
            [ 0.1121,  0.2006,  0.1023],
            [-0.2093, -0.0222, -0.0195],
            [-0.3087, -0.1535,  0.0366],
            [ 0.0290, -0.1574, -0.4078]
        ]

class SD3(LatentFormat):
    latent_channels = 16
    def __init__(self):
        self.scale_factor = 1.5305
        self.shift_factor = 0.0609
        self.latent_rgb_factors = [
            [-0.0922, -0.0175,  0.0749],
            [ 0.0311,  0.0633,  0.0954],
            [ 0.1994,  0.0927,  0.0458],
            [ 0.0856,  0.0339,  0.0902],
            [ 0.0587,  0.0272, -0.0496],
            [-0.0006,  0.1104,  0.0309],
            [ 0.0978,  0.0306,  0.0427],
            [-0.0042,  0.1038,  0.1358],
            [-0.0194,  0.0020,  0.0669],
            [-0.0488,  0.0130, -0.0268],
            [ 0.0922,  0.0988,  0.0951],
            [-0.0278,  0.0524, -0.0542],
            [ 0.0332,  0.0456,  0.0895],
            [-0.0069, -0.0030, -0.0810],
            [-0.0596, -0.0465, -0.0293],
            [-0.1448, -0.1463, -0.1189]
        ]
        self.latent_rgb_factors_bias = [0.2394, 0.2135, 0.1925]
        self.taesd_decoder_name = "taesd3_decoder"

    def process_in(self, latent):
        return (latent - self.shift_factor) * self.scale_factor

    def process_out(self, latent):
        return (latent / self.scale_factor) + self.shift_factor

class StableAudio1(LatentFormat):
    latent_channels = 64

class Flux(SD3):
    latent_channels = 16
    def __init__(self):
        self.scale_factor = 0.3611
        self.shift_factor = 0.1159
        self.latent_rgb_factors =[
            [-0.0346,  0.0244,  0.0681],
            [ 0.0034,  0.0210,  0.0687],
            [ 0.0275, -0.0668, -0.0433],
            [-0.0174,  0.0160,  0.0617],
            [ 0.0859,  0.0721,  0.0329],
            [ 0.0004,  0.0383,  0.0115],
            [ 0.0405,  0.0861,  0.0915],
            [-0.0236, -0.0185, -0.0259],
            [-0.0245,  0.0250,  0.1180],
            [ 0.1008,  0.0755, -0.0421],
            [-0.0515,  0.0201,  0.0011],
            [ 0.0428, -0.0012, -0.0036],
            [ 0.0817,  0.0765,  0.0749],
            [-0.1264, -0.0522, -0.1103],
            [-0.0280, -0.0881, -0.0499],
            [-0.1262, -0.0982, -0.0778]
        ]
        self.latent_rgb_factors_bias = [-0.0329, -0.0718, -0.0851]
        self.taesd_decoder_name = "taef1_decoder"

    def process_in(self, latent):
        return (latent - self.shift_factor) * self.scale_factor

    def process_out(self, latent):
        return (latent / self.scale_factor) + self.shift_factor

class Mochi(LatentFormat):
    latent_channels = 12

    def __init__(self):
        self.scale_factor = 1.0
        self.latents_mean = torch.tensor([-0.06730895953510081, -0.038011381506090416, -0.07477820912866141,
                                          -0.05565264470995561, 0.012767231469026969, -0.04703542746246419,
                                          0.043896967884726704, -0.09346305707025976, -0.09918314763016893,
                                          -0.008729793427399178, -0.011931556316503654, -0.0321993391887285]).view(1, self.latent_channels, 1, 1, 1)
        self.latents_std = torch.tensor([0.9263795028493863, 0.9248894543193766, 0.9393059390890617,
                                         0.959253732819592, 0.8244560132752793, 0.917259975397747,
                                         0.9294154431013696, 1.3720942357788521, 0.881393668867029,
                                         0.9168315692124348, 0.9185249279345552, 0.9274757570805041]).view(1, self.latent_channels, 1, 1, 1)

        self.latent_rgb_factors =[
            [-0.0069, -0.0045,  0.0018],
            [ 0.0154, -0.0692, -0.0274],
            [ 0.0333,  0.0019,  0.0206],
            [-0.1390,  0.0628,  0.1678],
            [-0.0725,  0.0134, -0.1898],
            [ 0.0074, -0.0270, -0.0209],
            [-0.0176, -0.0277, -0.0221],
            [ 0.5294,  0.5204,  0.3852],
            [-0.0326, -0.0446, -0.0143],
            [-0.0659,  0.0153, -0.0153],
            [ 0.0185, -0.0217,  0.0014],
            [-0.0396, -0.0495, -0.0281]
        ]
        self.latent_rgb_factors_bias = [-0.0940, -0.1418, -0.1453]
        self.taesd_decoder_name = None #TODO

    def process_in(self, latent):
        latents_mean = self.latents_mean.to(latent.device, latent.dtype)
        latents_std = self.latents_std.to(latent.device, latent.dtype)
        return (latent - latents_mean) * self.scale_factor / latents_std

    def process_out(self, latent):
        latents_mean = self.latents_mean.to(latent.device, latent.dtype)
        latents_std = self.latents_std.to(latent.device, latent.dtype)
        return latent * latents_std / self.scale_factor + latents_mean

class LTXV(LatentFormat):
    latent_channels = 128
    def __init__(self):
        self.latent_rgb_factors = [
            [ 1.1202e-02, -6.3815e-04, -1.0021e-02],
            [ 8.6031e-02,  6.5813e-02,  9.5409e-04],
            [-1.2576e-02, -7.5734e-03, -4.0528e-03],
            [ 9.4063e-03, -2.1688e-03,  2.6093e-03],
            [ 3.7636e-03,  1.2765e-02,  9.1548e-03],
            [ 2.1024e-02, -5.2973e-03,  3.4373e-03],
            [-8.8896e-03, -1.9703e-02, -1.8761e-02],
            [-1.3160e-02, -1.0523e-02,  1.9709e-03],
            [-1.5152e-03, -6.9891e-03, -7.5810e-03],
            [-1.7247e-03,  4.6560e-04, -3.3839e-03],
            [ 1.3617e-02,  4.7077e-03, -2.0045e-03],
            [ 1.0256e-02,  7.7318e-03,  1.3948e-02],
            [-1.6108e-02, -6.2151e-03,  1.1561e-03],
            [ 7.3407e-03,  1.5628e-02,  4.4865e-04],
            [ 9.5357e-04, -2.9518e-03, -1.4760e-02],
            [ 1.9143e-02,  1.0868e-02,  1.2264e-02],
            [ 4.4575e-03,  3.6682e-05, -6.8508e-03],
            [-4.5681e-04,  3.2570e-03,  7.7929e-03],
            [ 3.3902e-02,  3.3405e-02,  3.7454e-02],
            [-2.3001e-02, -2.4877e-03, -3.1033e-03],
            [ 5.0265e-02,  3.8841e-02,  3.3539e-02],
            [-4.1018e-03, -1.1095e-03,  1.5859e-03],
            [-1.2689e-01, -1.3107e-01, -2.1005e-01],
            [ 2.6276e-02,  1.4189e-02, -3.5963e-03],
            [-4.8679e-03,  8.8486e-03,  7.8029e-03],
            [-1.6610e-03, -4.8597e-03, -5.2060e-03],
            [-2.1010e-03,  2.3610e-03,  9.3796e-03],
            [-2.2482e-02, -2.1305e-02, -1.5087e-02],
            [-1.5753e-02, -1.0646e-02, -6.5083e-03],
            [-4.6975e-03,  5.0288e-03, -6.7390e-03],
            [ 1.1951e-02,  2.0712e-02,  1.6191e-02],
            [-6.3704e-03, -8.4827e-03, -9.5483e-03],
            [ 7.2610e-03, -9.9326e-03, -2.2978e-02],
            [-9.1904e-04,  6.2882e-03,  9.5720e-03],
            [-3.7178e-02, -3.7123e-02, -5.6713e-02],
            [-1.3373e-01, -1.0720e-01, -5.3801e-02],
            [-5.3702e-03,  8.1256e-03,  8.8397e-03],
            [-1.5247e-01, -2.1437e-01, -2.1843e-01],
            [ 3.1441e-02,  7.0335e-03, -9.7541e-03],
            [ 2.1528e-03, -8.9817e-03, -2.1023e-02],
            [ 3.8461e-03, -5.8957e-03, -1.5014e-02],
            [-4.3470e-03, -1.2940e-02, -1.5972e-02],
            [-5.4781e-03, -1.0842e-02, -3.0204e-03],
            [-6.5347e-03,  3.0806e-03, -1.0163e-02],
            [-5.0414e-03, -7.1503e-03, -8.9686e-04],
            [-8.5851e-03, -2.4351e-03,  1.0674e-03],
            [-9.0016e-03, -9.6493e-03,  1.5692e-03],
            [ 5.0914e-03,  1.2099e-02,  1.9968e-02],
            [ 1.3758e-02,  1.1669e-02,  8.1958e-03],
            [-1.0518e-02, -1.1575e-02, -4.1307e-03],
            [-2.8410e-02, -3.1266e-02, -2.2149e-02],
            [ 2.9336e-03,  3.6511e-02,  1.8717e-02],
            [-1.6703e-02, -1.6696e-02, -4.4529e-03],
            [ 4.8818e-02,  4.0063e-02,  8.7410e-03],
            [-1.5066e-02, -5.7328e-04,  2.9785e-03],
            [-1.7613e-02, -8.1034e-03,  1.3086e-02],
            [-9.2633e-03,  1.0803e-02, -6.3489e-03],
            [ 3.0851e-03,  4.7750e-04,  1.2347e-02],
            [-2.2785e-02, -2.3043e-02, -2.6005e-02],
            [-2.4787e-02, -1.5389e-02, -2.2104e-02],
            [-2.3572e-02,  1.0544e-03,  1.2361e-02],
            [-7.8915e-03, -1.2271e-03, -6.0968e-03],
            [-1.1478e-02, -1.2543e-03,  6.2679e-03],
            [-5.4229e-02,  2.6644e-02,  6.3394e-03],
            [ 4.4216e-03, -7.3338e-03, -1.0464e-02],
            [-4.5013e-03,  1.6082e-03,  1.4420e-02],
            [ 1.3673e-02,  8.8877e-03,  4.1253e-03],
            [-1.0145e-02,  9.0072e-03,  1.5695e-02],
            [-5.6234e-03,  1.1847e-03,  8.1261e-03],
            [-3.7171e-03, -5.3538e-03,  1.2590e-03],
            [ 2.9476e-02,  2.1424e-02,  3.0424e-02],
            [-3.4925e-02, -2.4340e-02, -2.5316e-02],
            [-3.4127e-02, -2.2406e-02, -1.0589e-02],
            [-1.7342e-02, -1.3249e-02, -1.0719e-02],
            [-2.1478e-03, -8.6051e-03, -2.9878e-03],
            [ 1.2089e-03, -4.2391e-03, -6.8569e-03],
            [ 9.0411e-04, -6.6886e-03, -6.7547e-05],
            [ 1.6048e-02, -1.0057e-02, -2.8929e-02],
            [ 1.2290e-03,  1.0163e-02,  1.8861e-02],
            [ 1.7264e-02,  2.7257e-04,  1.3785e-02],
            [-1.3482e-02, -3.6427e-03,  6.7481e-04],
            [ 4.6782e-03, -5.2423e-03,  2.4467e-03],
            [-5.9113e-03, -6.2244e-03, -1.8162e-03],
            [ 1.5496e-02,  1.4582e-02,  1.9514e-03],
            [ 7.4958e-03,  1.5886e-03, -8.2305e-03],
            [ 1.9086e-02,  1.6360e-03, -3.9674e-03],
            [-5.7021e-03, -2.7307e-03, -4.1066e-03],
            [ 1.7450e-03,  1.4602e-02,  2.5794e-02],
            [-8.2788e-04,  2.2902e-03,  4.5161e-03],
            [ 1.1632e-02,  8.9193e-03, -7.2813e-03],
            [ 7.5721e-03,  2.6784e-03,  1.1393e-02],
            [ 5.1939e-03,  3.6903e-03,  1.4049e-02],
            [-1.8383e-02, -2.2529e-02, -2.4477e-02],
            [ 5.8842e-04, -5.7874e-03, -1.4770e-02],
            [-1.6125e-02, -8.6101e-03, -1.4533e-02],
            [ 2.0540e-02,  2.0729e-02,  6.4338e-03],
            [ 3.3587e-03, -1.1226e-02, -1.6444e-02],
            [-1.4742e-03, -1.0489e-02,  1.7097e-03],
            [ 2.8130e-02,  2.3546e-02,  3.2791e-02],
            [-1.8532e-02, -1.2842e-02, -8.7756e-03],
            [-8.0533e-03, -1.0771e-02, -1.7536e-02],
            [-3.9009e-03,  1.6150e-02,  3.3359e-02],
            [-7.4554e-03, -1.4154e-02, -6.1910e-03],
            [ 3.4734e-03, -1.1370e-02, -1.0581e-02],
            [ 1.1476e-02,  3.9281e-03,  2.8231e-03],
            [ 7.1639e-03, -1.4741e-03, -3.8066e-03],
            [ 2.2250e-03, -8.7552e-03, -9.5719e-03],
            [ 2.4146e-02,  2.1696e-02,  2.8056e-02],
            [-5.4365e-03, -2.4291e-02, -1.7802e-02],
            [ 7.4263e-03,  1.0510e-02,  1.2705e-02],
            [ 6.2669e-03,  6.2658e-03,  1.9211e-02],
            [ 1.6378e-02,  9.4933e-03,  6.6971e-03],
            [ 1.7173e-02,  2.3601e-02,  2.3296e-02],
            [-1.4568e-02, -9.8279e-03, -1.1556e-02],
            [ 1.4431e-02,  1.4430e-02,  6.6362e-03],
            [-6.8230e-03,  1.8863e-02,  1.4555e-02],
            [ 6.1156e-03,  3.4700e-03, -2.6662e-03],
            [-2.6983e-03, -5.9402e-03, -9.2276e-03],
            [ 1.0235e-02,  7.4173e-03, -7.6243e-03],
            [-1.3255e-02,  1.9322e-02, -9.2153e-04],
            [ 2.4222e-03, -4.8039e-03, -1.5759e-02],
            [ 2.6244e-02,  2.5951e-02,  2.0249e-02],
            [ 1.5711e-02,  1.8498e-02,  2.7407e-03],
            [-2.1714e-03,  4.7214e-03, -2.2443e-02],
            [-7.4747e-03,  7.4166e-03,  1.4430e-02],
            [-8.3906e-03, -7.9776e-03,  9.7927e-03],
            [ 3.8321e-02,  9.6622e-03, -1.9268e-02],
            [-1.4605e-02, -6.7032e-03,  3.9675e-03]
        ]

        self.latent_rgb_factors_bias = [-0.0571, -0.1657, -0.2512]