File size: 19,141 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
#original code from https://github.com/genmoai/models under apache 2.0 license
#adapted to ComfyUI

from typing import Dict, List, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
# from flash_attn import flash_attn_varlen_qkvpacked_func
from comfy.ldm.modules.attention import optimized_attention

from .layers import (
    FeedForward,
    PatchEmbed,
    RMSNorm,
    TimestepEmbedder,
)

from .rope_mixed import (
    compute_mixed_rotation,
    create_position_matrix,
)
from .temporal_rope import apply_rotary_emb_qk_real
from .utils import (
    AttentionPool,
    modulate,
)

import comfy.ldm.common_dit
import comfy.ops


def modulated_rmsnorm(x, scale, eps=1e-6):
    # Normalize and modulate
    x_normed = comfy.ldm.common_dit.rms_norm(x, eps=eps)
    x_modulated = x_normed * (1 + scale.unsqueeze(1))

    return x_modulated


def residual_tanh_gated_rmsnorm(x, x_res, gate, eps=1e-6):
    # Apply tanh to gate
    tanh_gate = torch.tanh(gate).unsqueeze(1)

    # Normalize and apply gated scaling
    x_normed = comfy.ldm.common_dit.rms_norm(x_res, eps=eps) * tanh_gate

    # Apply residual connection
    output = x + x_normed

    return output

class AsymmetricAttention(nn.Module):
    def __init__(
        self,
        dim_x: int,
        dim_y: int,
        num_heads: int = 8,
        qkv_bias: bool = True,
        qk_norm: bool = False,
        attn_drop: float = 0.0,
        update_y: bool = True,
        out_bias: bool = True,
        attend_to_padding: bool = False,
        softmax_scale: Optional[float] = None,
        device: Optional[torch.device] = None,
        dtype=None,
        operations=None,
    ):
        super().__init__()
        self.dim_x = dim_x
        self.dim_y = dim_y
        self.num_heads = num_heads
        self.head_dim = dim_x // num_heads
        self.attn_drop = attn_drop
        self.update_y = update_y
        self.attend_to_padding = attend_to_padding
        self.softmax_scale = softmax_scale
        if dim_x % num_heads != 0:
            raise ValueError(
                f"dim_x={dim_x} should be divisible by num_heads={num_heads}"
            )

        # Input layers.
        self.qkv_bias = qkv_bias
        self.qkv_x = operations.Linear(dim_x, 3 * dim_x, bias=qkv_bias, device=device, dtype=dtype)
        # Project text features to match visual features (dim_y -> dim_x)
        self.qkv_y = operations.Linear(dim_y, 3 * dim_x, bias=qkv_bias, device=device, dtype=dtype)

        # Query and key normalization for stability.
        assert qk_norm
        self.q_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype)
        self.k_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype)
        self.q_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype)
        self.k_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype)

        # Output layers. y features go back down from dim_x -> dim_y.
        self.proj_x = operations.Linear(dim_x, dim_x, bias=out_bias, device=device, dtype=dtype)
        self.proj_y = (
            operations.Linear(dim_x, dim_y, bias=out_bias, device=device, dtype=dtype)
            if update_y
            else nn.Identity()
        )

    def forward(
        self,
        x: torch.Tensor,  # (B, N, dim_x)
        y: torch.Tensor,  # (B, L, dim_y)
        scale_x: torch.Tensor,  # (B, dim_x), modulation for pre-RMSNorm.
        scale_y: torch.Tensor,  # (B, dim_y), modulation for pre-RMSNorm.
        crop_y,
        **rope_rotation,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        rope_cos = rope_rotation.get("rope_cos")
        rope_sin = rope_rotation.get("rope_sin")
        # Pre-norm for visual features
        x = modulated_rmsnorm(x, scale_x)  # (B, M, dim_x) where M = N / cp_group_size

        # Process visual features
        # qkv_x = self.qkv_x(x)  # (B, M, 3 * dim_x)
        # assert qkv_x.dtype == torch.bfloat16
        # qkv_x = all_to_all_collect_tokens(
        #     qkv_x, self.num_heads
        # )  # (3, B, N, local_h, head_dim)

        # Process text features
        y = modulated_rmsnorm(y, scale_y)  # (B, L, dim_y)
        q_y, k_y, v_y = self.qkv_y(y).view(y.shape[0], y.shape[1], 3, self.num_heads, -1).unbind(2)  # (B, N, local_h, head_dim)

        q_y = self.q_norm_y(q_y)
        k_y = self.k_norm_y(k_y)

        # Split qkv_x into q, k, v
        q_x, k_x, v_x = self.qkv_x(x).view(x.shape[0], x.shape[1], 3, self.num_heads, -1).unbind(2)  # (B, N, local_h, head_dim)
        q_x = self.q_norm_x(q_x)
        q_x = apply_rotary_emb_qk_real(q_x, rope_cos, rope_sin)
        k_x = self.k_norm_x(k_x)
        k_x = apply_rotary_emb_qk_real(k_x, rope_cos, rope_sin)

        q = torch.cat([q_x, q_y[:, :crop_y]], dim=1).transpose(1, 2)
        k = torch.cat([k_x, k_y[:, :crop_y]], dim=1).transpose(1, 2)
        v = torch.cat([v_x, v_y[:, :crop_y]], dim=1).transpose(1, 2)

        xy = optimized_attention(q,
                                 k,
                                 v, self.num_heads, skip_reshape=True)

        x, y = torch.tensor_split(xy, (q_x.shape[1],), dim=1)
        x = self.proj_x(x)
        o = torch.zeros(y.shape[0], q_y.shape[1], y.shape[-1], device=y.device, dtype=y.dtype)
        o[:, :y.shape[1]] = y

        y = self.proj_y(o)
        # print("ox", x)
        # print("oy", y)
        return x, y


class AsymmetricJointBlock(nn.Module):
    def __init__(
        self,
        hidden_size_x: int,
        hidden_size_y: int,
        num_heads: int,
        *,
        mlp_ratio_x: float = 8.0,  # Ratio of hidden size to d_model for MLP for visual tokens.
        mlp_ratio_y: float = 4.0,  # Ratio of hidden size to d_model for MLP for text tokens.
        update_y: bool = True,  # Whether to update text tokens in this block.
        device: Optional[torch.device] = None,
        dtype=None,
        operations=None,
        **block_kwargs,
    ):
        super().__init__()
        self.update_y = update_y
        self.hidden_size_x = hidden_size_x
        self.hidden_size_y = hidden_size_y
        self.mod_x = operations.Linear(hidden_size_x, 4 * hidden_size_x, device=device, dtype=dtype)
        if self.update_y:
            self.mod_y = operations.Linear(hidden_size_x, 4 * hidden_size_y, device=device, dtype=dtype)
        else:
            self.mod_y = operations.Linear(hidden_size_x, hidden_size_y, device=device, dtype=dtype)

        # Self-attention:
        self.attn = AsymmetricAttention(
            hidden_size_x,
            hidden_size_y,
            num_heads=num_heads,
            update_y=update_y,
            device=device,
            dtype=dtype,
            operations=operations,
            **block_kwargs,
        )

        # MLP.
        mlp_hidden_dim_x = int(hidden_size_x * mlp_ratio_x)
        assert mlp_hidden_dim_x == int(1536 * 8)
        self.mlp_x = FeedForward(
            in_features=hidden_size_x,
            hidden_size=mlp_hidden_dim_x,
            multiple_of=256,
            ffn_dim_multiplier=None,
            device=device,
            dtype=dtype,
            operations=operations,
        )

        # MLP for text not needed in last block.
        if self.update_y:
            mlp_hidden_dim_y = int(hidden_size_y * mlp_ratio_y)
            self.mlp_y = FeedForward(
                in_features=hidden_size_y,
                hidden_size=mlp_hidden_dim_y,
                multiple_of=256,
                ffn_dim_multiplier=None,
                device=device,
                dtype=dtype,
                operations=operations,
            )

    def forward(
        self,
        x: torch.Tensor,
        c: torch.Tensor,
        y: torch.Tensor,
        **attn_kwargs,
    ):
        """Forward pass of a block.

        Args:
            x: (B, N, dim) tensor of visual tokens
            c: (B, dim) tensor of conditioned features
            y: (B, L, dim) tensor of text tokens
            num_frames: Number of frames in the video. N = num_frames * num_spatial_tokens

        Returns:
            x: (B, N, dim) tensor of visual tokens after block
            y: (B, L, dim) tensor of text tokens after block
        """
        N = x.size(1)

        c = F.silu(c)
        mod_x = self.mod_x(c)
        scale_msa_x, gate_msa_x, scale_mlp_x, gate_mlp_x = mod_x.chunk(4, dim=1)

        mod_y = self.mod_y(c)
        if self.update_y:
            scale_msa_y, gate_msa_y, scale_mlp_y, gate_mlp_y = mod_y.chunk(4, dim=1)
        else:
            scale_msa_y = mod_y

        # Self-attention block.
        x_attn, y_attn = self.attn(
            x,
            y,
            scale_x=scale_msa_x,
            scale_y=scale_msa_y,
            **attn_kwargs,
        )

        assert x_attn.size(1) == N
        x = residual_tanh_gated_rmsnorm(x, x_attn, gate_msa_x)
        if self.update_y:
            y = residual_tanh_gated_rmsnorm(y, y_attn, gate_msa_y)

        # MLP block.
        x = self.ff_block_x(x, scale_mlp_x, gate_mlp_x)
        if self.update_y:
            y = self.ff_block_y(y, scale_mlp_y, gate_mlp_y)

        return x, y

    def ff_block_x(self, x, scale_x, gate_x):
        x_mod = modulated_rmsnorm(x, scale_x)
        x_res = self.mlp_x(x_mod)
        x = residual_tanh_gated_rmsnorm(x, x_res, gate_x)  # Sandwich norm
        return x

    def ff_block_y(self, y, scale_y, gate_y):
        y_mod = modulated_rmsnorm(y, scale_y)
        y_res = self.mlp_y(y_mod)
        y = residual_tanh_gated_rmsnorm(y, y_res, gate_y)  # Sandwich norm
        return y


class FinalLayer(nn.Module):
    """
    The final layer of DiT.
    """

    def __init__(
        self,
        hidden_size,
        patch_size,
        out_channels,
        device: Optional[torch.device] = None,
        dtype=None,
        operations=None,
    ):
        super().__init__()
        self.norm_final = operations.LayerNorm(
            hidden_size, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype
        )
        self.mod = operations.Linear(hidden_size, 2 * hidden_size, device=device, dtype=dtype)
        self.linear = operations.Linear(
            hidden_size, patch_size * patch_size * out_channels, device=device, dtype=dtype
        )

    def forward(self, x, c):
        c = F.silu(c)
        shift, scale = self.mod(c).chunk(2, dim=1)
        x = modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x


class AsymmDiTJoint(nn.Module):
    """
    Diffusion model with a Transformer backbone.

    Ingests text embeddings instead of a label.
    """

    def __init__(
        self,
        *,
        patch_size=2,
        in_channels=4,
        hidden_size_x=1152,
        hidden_size_y=1152,
        depth=48,
        num_heads=16,
        mlp_ratio_x=8.0,
        mlp_ratio_y=4.0,
        use_t5: bool = False,
        t5_feat_dim: int = 4096,
        t5_token_length: int = 256,
        learn_sigma=True,
        patch_embed_bias: bool = True,
        timestep_mlp_bias: bool = True,
        attend_to_padding: bool = False,
        timestep_scale: Optional[float] = None,
        use_extended_posenc: bool = False,
        posenc_preserve_area: bool = False,
        rope_theta: float = 10000.0,
        image_model=None,
        device: Optional[torch.device] = None,
        dtype=None,
        operations=None,
        **block_kwargs,
    ):
        super().__init__()

        self.dtype = dtype
        self.learn_sigma = learn_sigma
        self.in_channels = in_channels
        self.out_channels = in_channels * 2 if learn_sigma else in_channels
        self.patch_size = patch_size
        self.num_heads = num_heads
        self.hidden_size_x = hidden_size_x
        self.hidden_size_y = hidden_size_y
        self.head_dim = (
            hidden_size_x // num_heads
        )  # Head dimension and count is determined by visual.
        self.attend_to_padding = attend_to_padding
        self.use_extended_posenc = use_extended_posenc
        self.posenc_preserve_area = posenc_preserve_area
        self.use_t5 = use_t5
        self.t5_token_length = t5_token_length
        self.t5_feat_dim = t5_feat_dim
        self.rope_theta = (
            rope_theta  # Scaling factor for frequency computation for temporal RoPE.
        )

        self.x_embedder = PatchEmbed(
            patch_size=patch_size,
            in_chans=in_channels,
            embed_dim=hidden_size_x,
            bias=patch_embed_bias,
            dtype=dtype,
            device=device,
            operations=operations
        )
        # Conditionings
        # Timestep
        self.t_embedder = TimestepEmbedder(
            hidden_size_x, bias=timestep_mlp_bias, timestep_scale=timestep_scale, dtype=dtype, device=device, operations=operations
        )

        if self.use_t5:
            # Caption Pooling (T5)
            self.t5_y_embedder = AttentionPool(
                t5_feat_dim, num_heads=8, output_dim=hidden_size_x, dtype=dtype, device=device, operations=operations
            )

            # Dense Embedding Projection (T5)
            self.t5_yproj = operations.Linear(
                t5_feat_dim, hidden_size_y, bias=True, dtype=dtype, device=device
            )

        # Initialize pos_frequencies as an empty parameter.
        self.pos_frequencies = nn.Parameter(
            torch.empty(3, self.num_heads, self.head_dim // 2, dtype=dtype, device=device)
        )

        assert not self.attend_to_padding

        # for depth 48:
        #  b =  0: AsymmetricJointBlock, update_y=True
        #  b =  1: AsymmetricJointBlock, update_y=True
        #  ...
        #  b = 46: AsymmetricJointBlock, update_y=True
        #  b = 47: AsymmetricJointBlock, update_y=False. No need to update text features.
        blocks = []
        for b in range(depth):
            # Joint multi-modal block
            update_y = b < depth - 1
            block = AsymmetricJointBlock(
                hidden_size_x,
                hidden_size_y,
                num_heads,
                mlp_ratio_x=mlp_ratio_x,
                mlp_ratio_y=mlp_ratio_y,
                update_y=update_y,
                attend_to_padding=attend_to_padding,
                device=device,
                dtype=dtype,
                operations=operations,
                **block_kwargs,
            )

            blocks.append(block)
        self.blocks = nn.ModuleList(blocks)

        self.final_layer = FinalLayer(
            hidden_size_x, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations
        )

    def embed_x(self, x: torch.Tensor) -> torch.Tensor:
        """
        Args:
            x: (B, C=12, T, H, W) tensor of visual tokens

        Returns:
            x: (B, C=3072, N) tensor of visual tokens with positional embedding.
        """
        return self.x_embedder(x)  # Convert BcTHW to BCN

    def prepare(
        self,
        x: torch.Tensor,
        sigma: torch.Tensor,
        t5_feat: torch.Tensor,
        t5_mask: torch.Tensor,
    ):
        """Prepare input and conditioning embeddings."""
        # Visual patch embeddings with positional encoding.
        T, H, W = x.shape[-3:]
        pH, pW = H // self.patch_size, W // self.patch_size
        x = self.embed_x(x)  # (B, N, D), where N = T * H * W / patch_size ** 2
        assert x.ndim == 3
        B = x.size(0)


        pH, pW = H // self.patch_size, W // self.patch_size
        N = T * pH * pW
        assert x.size(1) == N
        pos = create_position_matrix(
            T, pH=pH, pW=pW, device=x.device, dtype=torch.float32
        )  # (N, 3)
        rope_cos, rope_sin = compute_mixed_rotation(
            freqs=comfy.ops.cast_to(self.pos_frequencies, dtype=x.dtype, device=x.device), pos=pos
        )  # Each are (N, num_heads, dim // 2)

        c_t = self.t_embedder(1 - sigma, out_dtype=x.dtype)  # (B, D)

        t5_y_pool = self.t5_y_embedder(t5_feat, t5_mask)  # (B, D)

        c = c_t + t5_y_pool

        y_feat = self.t5_yproj(t5_feat)  # (B, L, t5_feat_dim) --> (B, L, D)

        return x, c, y_feat, rope_cos, rope_sin

    def forward(
        self,
        x: torch.Tensor,
        timestep: torch.Tensor,
        context: List[torch.Tensor],
        attention_mask: List[torch.Tensor],
        num_tokens=256,
        packed_indices: Dict[str, torch.Tensor] = None,
        rope_cos: torch.Tensor = None,
        rope_sin: torch.Tensor = None,
        control=None, transformer_options={}, **kwargs
    ):
        patches_replace = transformer_options.get("patches_replace", {})
        y_feat = context
        y_mask = attention_mask
        sigma = timestep
        """Forward pass of DiT.

        Args:
            x: (B, C, T, H, W) tensor of spatial inputs (images or latent representations of images)
            sigma: (B,) tensor of noise standard deviations
            y_feat: List((B, L, y_feat_dim) tensor of caption token features. For SDXL text encoders: L=77, y_feat_dim=2048)
            y_mask: List((B, L) boolean tensor indicating which tokens are not padding)
            packed_indices: Dict with keys for Flash Attention. Result of compute_packed_indices.
        """
        B, _, T, H, W = x.shape

        x, c, y_feat, rope_cos, rope_sin = self.prepare(
            x, sigma, y_feat, y_mask
        )
        del y_mask

        blocks_replace = patches_replace.get("dit", {})
        for i, block in enumerate(self.blocks):
            if ("double_block", i) in blocks_replace:
                def block_wrap(args):
                    out = {}
                    out["img"], out["txt"] = block(
                                                    args["img"],
                                                    args["vec"],
                                                    args["txt"],
                                                    rope_cos=args["rope_cos"],
                                                    rope_sin=args["rope_sin"],
                                                    crop_y=args["num_tokens"]
                                                    )
                    return out
                out = blocks_replace[("double_block", i)]({"img": x, "txt": y_feat, "vec": c, "rope_cos": rope_cos, "rope_sin": rope_sin, "num_tokens": num_tokens}, {"original_block": block_wrap})
                y_feat = out["txt"]
                x = out["img"]
            else:
                x, y_feat = block(
                    x,
                    c,
                    y_feat,
                    rope_cos=rope_cos,
                    rope_sin=rope_sin,
                    crop_y=num_tokens,
                )  # (B, M, D), (B, L, D)
        del y_feat  # Final layers don't use dense text features.

        x = self.final_layer(x, c)  # (B, M, patch_size ** 2 * out_channels)
        x = rearrange(
            x,
            "B (T hp wp) (p1 p2 c) -> B c T (hp p1) (wp p2)",
            T=T,
            hp=H // self.patch_size,
            wp=W // self.patch_size,
            p1=self.patch_size,
            p2=self.patch_size,
            c=self.out_channels,
        )

        return -x