File size: 19,911 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
import torch
from torch import nn
import comfy.ldm.modules.attention
from comfy.ldm.genmo.joint_model.layers import RMSNorm
import comfy.ldm.common_dit
from einops import rearrange
import math
from typing import Dict, Optional, Tuple

from .symmetric_patchifier import SymmetricPatchifier


def get_timestep_embedding(
    timesteps: torch.Tensor,
    embedding_dim: int,
    flip_sin_to_cos: bool = False,
    downscale_freq_shift: float = 1,
    scale: float = 1,
    max_period: int = 10000,
):
    """
    This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.

    Args
        timesteps (torch.Tensor):
            a 1-D Tensor of N indices, one per batch element. These may be fractional.
        embedding_dim (int):
            the dimension of the output.
        flip_sin_to_cos (bool):
            Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
        downscale_freq_shift (float):
            Controls the delta between frequencies between dimensions
        scale (float):
            Scaling factor applied to the embeddings.
        max_period (int):
            Controls the maximum frequency of the embeddings
    Returns
        torch.Tensor: an [N x dim] Tensor of positional embeddings.
    """
    assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"

    half_dim = embedding_dim // 2
    exponent = -math.log(max_period) * torch.arange(
        start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
    )
    exponent = exponent / (half_dim - downscale_freq_shift)

    emb = torch.exp(exponent)
    emb = timesteps[:, None].float() * emb[None, :]

    # scale embeddings
    emb = scale * emb

    # concat sine and cosine embeddings
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)

    # flip sine and cosine embeddings
    if flip_sin_to_cos:
        emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)

    # zero pad
    if embedding_dim % 2 == 1:
        emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
    return emb


class TimestepEmbedding(nn.Module):
    def __init__(
        self,
        in_channels: int,
        time_embed_dim: int,
        act_fn: str = "silu",
        out_dim: int = None,
        post_act_fn: Optional[str] = None,
        cond_proj_dim=None,
        sample_proj_bias=True,
        dtype=None, device=None, operations=None,
    ):
        super().__init__()

        self.linear_1 = operations.Linear(in_channels, time_embed_dim, sample_proj_bias, dtype=dtype, device=device)

        if cond_proj_dim is not None:
            self.cond_proj = operations.Linear(cond_proj_dim, in_channels, bias=False, dtype=dtype, device=device)
        else:
            self.cond_proj = None

        self.act = nn.SiLU()

        if out_dim is not None:
            time_embed_dim_out = out_dim
        else:
            time_embed_dim_out = time_embed_dim
        self.linear_2 = operations.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias, dtype=dtype, device=device)

        if post_act_fn is None:
            self.post_act = None
        # else:
        #     self.post_act = get_activation(post_act_fn)

    def forward(self, sample, condition=None):
        if condition is not None:
            sample = sample + self.cond_proj(condition)
        sample = self.linear_1(sample)

        if self.act is not None:
            sample = self.act(sample)

        sample = self.linear_2(sample)

        if self.post_act is not None:
            sample = self.post_act(sample)
        return sample


class Timesteps(nn.Module):
    def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1):
        super().__init__()
        self.num_channels = num_channels
        self.flip_sin_to_cos = flip_sin_to_cos
        self.downscale_freq_shift = downscale_freq_shift
        self.scale = scale

    def forward(self, timesteps):
        t_emb = get_timestep_embedding(
            timesteps,
            self.num_channels,
            flip_sin_to_cos=self.flip_sin_to_cos,
            downscale_freq_shift=self.downscale_freq_shift,
            scale=self.scale,
        )
        return t_emb


class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
    """
    For PixArt-Alpha.

    Reference:
    https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29
    """

    def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False, dtype=None, device=None, operations=None):
        super().__init__()

        self.outdim = size_emb_dim
        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim, dtype=dtype, device=device, operations=operations)

    def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype))  # (N, D)
        return timesteps_emb


class AdaLayerNormSingle(nn.Module):
    r"""
    Norm layer adaptive layer norm single (adaLN-single).

    As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
        use_additional_conditions (`bool`): To use additional conditions for normalization or not.
    """

    def __init__(self, embedding_dim: int, use_additional_conditions: bool = False, dtype=None, device=None, operations=None):
        super().__init__()

        self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings(
            embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions, dtype=dtype, device=device, operations=operations
        )

        self.silu = nn.SiLU()
        self.linear = operations.Linear(embedding_dim, 6 * embedding_dim, bias=True, dtype=dtype, device=device)

    def forward(
        self,
        timestep: torch.Tensor,
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
        batch_size: Optional[int] = None,
        hidden_dtype: Optional[torch.dtype] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        # No modulation happening here.
        added_cond_kwargs = added_cond_kwargs or {"resolution": None, "aspect_ratio": None}
        embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype)
        return self.linear(self.silu(embedded_timestep)), embedded_timestep

class PixArtAlphaTextProjection(nn.Module):
    """
    Projects caption embeddings. Also handles dropout for classifier-free guidance.

    Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
    """

    def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", dtype=None, device=None, operations=None):
        super().__init__()
        if out_features is None:
            out_features = hidden_size
        self.linear_1 = operations.Linear(in_features=in_features, out_features=hidden_size, bias=True, dtype=dtype, device=device)
        if act_fn == "gelu_tanh":
            self.act_1 = nn.GELU(approximate="tanh")
        elif act_fn == "silu":
            self.act_1 = nn.SiLU()
        else:
            raise ValueError(f"Unknown activation function: {act_fn}")
        self.linear_2 = operations.Linear(in_features=hidden_size, out_features=out_features, bias=True, dtype=dtype, device=device)

    def forward(self, caption):
        hidden_states = self.linear_1(caption)
        hidden_states = self.act_1(hidden_states)
        hidden_states = self.linear_2(hidden_states)
        return hidden_states


class GELU_approx(nn.Module):
    def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=None):
        super().__init__()
        self.proj = operations.Linear(dim_in, dim_out, dtype=dtype, device=device)

    def forward(self, x):
        return torch.nn.functional.gelu(self.proj(x), approximate="tanh")


class FeedForward(nn.Module):
    def __init__(self, dim, dim_out, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=None):
        super().__init__()
        inner_dim = int(dim * mult)
        project_in = GELU_approx(dim, inner_dim, dtype=dtype, device=device, operations=operations)

        self.net = nn.Sequential(
            project_in,
            nn.Dropout(dropout),
            operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
        )

    def forward(self, x):
        return self.net(x)


def apply_rotary_emb(input_tensor, freqs_cis): #TODO: remove duplicate funcs and pick the best/fastest one
    cos_freqs = freqs_cis[0]
    sin_freqs = freqs_cis[1]

    t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2)
    t1, t2 = t_dup.unbind(dim=-1)
    t_dup = torch.stack((-t2, t1), dim=-1)
    input_tensor_rot = rearrange(t_dup, "... d r -> ... (d r)")

    out = input_tensor * cos_freqs + input_tensor_rot * sin_freqs

    return out


class CrossAttention(nn.Module):
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=None):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = query_dim if context_dim is None else context_dim
        self.attn_precision = attn_precision

        self.heads = heads
        self.dim_head = dim_head

        self.q_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
        self.k_norm = RMSNorm(inner_dim, dtype=dtype, device=device)

        self.to_q = operations.Linear(query_dim, inner_dim, bias=True, dtype=dtype, device=device)
        self.to_k = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
        self.to_v = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)

        self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))

    def forward(self, x, context=None, mask=None, pe=None):
        q = self.to_q(x)
        context = x if context is None else context
        k = self.to_k(context)
        v = self.to_v(context)

        q = self.q_norm(q)
        k = self.k_norm(k)

        if pe is not None:
            q = apply_rotary_emb(q, pe)
            k = apply_rotary_emb(k, pe)

        if mask is None:
            out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision)
        else:
            out = comfy.ldm.modules.attention.optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision)
        return self.to_out(out)


class BasicTransformerBlock(nn.Module):
    def __init__(self, dim, n_heads, d_head, context_dim=None, attn_precision=None, dtype=None, device=None, operations=None):
        super().__init__()

        self.attn_precision = attn_precision
        self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, context_dim=None, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations)
        self.ff = FeedForward(dim, dim_out=dim, glu=True, dtype=dtype, device=device, operations=operations)

        self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations)

        self.scale_shift_table = nn.Parameter(torch.empty(6, dim, device=device, dtype=dtype))

    def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None):
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + timestep.reshape(x.shape[0], timestep.shape[1], self.scale_shift_table.shape[0], -1)).unbind(dim=2)

        x += self.attn1(comfy.ldm.common_dit.rms_norm(x) * (1 + scale_msa) + shift_msa, pe=pe) * gate_msa

        x += self.attn2(x, context=context, mask=attention_mask)

        y = comfy.ldm.common_dit.rms_norm(x) * (1 + scale_mlp) + shift_mlp
        x += self.ff(y) * gate_mlp

        return x

def get_fractional_positions(indices_grid, max_pos):
    fractional_positions = torch.stack(
        [
            indices_grid[:, i] / max_pos[i]
            for i in range(3)
        ],
        dim=-1,
    )
    return fractional_positions


def precompute_freqs_cis(indices_grid, dim, out_dtype, theta=10000.0, max_pos=[20, 2048, 2048]):
    dtype = torch.float32 #self.dtype

    fractional_positions = get_fractional_positions(indices_grid, max_pos)

    start = 1
    end = theta
    device = fractional_positions.device

    indices = theta ** (
        torch.linspace(
            math.log(start, theta),
            math.log(end, theta),
            dim // 6,
            device=device,
            dtype=dtype,
        )
    )
    indices = indices.to(dtype=dtype)

    indices = indices * math.pi / 2

    freqs = (
        (indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
        .transpose(-1, -2)
        .flatten(2)
    )

    cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
    sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
    if dim % 6 != 0:
        cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6])
        sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
        cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
        sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
    return cos_freq.to(out_dtype), sin_freq.to(out_dtype)


class LTXVModel(torch.nn.Module):
    def __init__(self,
                 in_channels=128,
                 cross_attention_dim=2048,
                 attention_head_dim=64,
                 num_attention_heads=32,

                 caption_channels=4096,
                 num_layers=28,


                 positional_embedding_theta=10000.0,
                 positional_embedding_max_pos=[20, 2048, 2048],
                 dtype=None, device=None, operations=None, **kwargs):
        super().__init__()
        self.dtype = dtype
        self.out_channels = in_channels
        self.inner_dim = num_attention_heads * attention_head_dim

        self.patchify_proj = operations.Linear(in_channels, self.inner_dim, bias=True, dtype=dtype, device=device)

        self.adaln_single = AdaLayerNormSingle(
            self.inner_dim, use_additional_conditions=False, dtype=dtype, device=device, operations=operations
        )

        # self.adaln_single.linear = operations.Linear(self.inner_dim, 4 * self.inner_dim, bias=True, dtype=dtype, device=device)

        self.caption_projection = PixArtAlphaTextProjection(
            in_features=caption_channels, hidden_size=self.inner_dim, dtype=dtype, device=device, operations=operations
        )

        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    self.inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    context_dim=cross_attention_dim,
                    # attn_precision=attn_precision,
                    dtype=dtype, device=device, operations=operations
                )
                for d in range(num_layers)
            ]
        )

        self.scale_shift_table = nn.Parameter(torch.empty(2, self.inner_dim, dtype=dtype, device=device))
        self.norm_out = operations.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
        self.proj_out = operations.Linear(self.inner_dim, self.out_channels, dtype=dtype, device=device)

        self.patchifier = SymmetricPatchifier(1)

    def forward(self, x, timestep, context, attention_mask, frame_rate=25, guiding_latent=None, transformer_options={}, **kwargs):
        patches_replace = transformer_options.get("patches_replace", {})

        indices_grid = self.patchifier.get_grid(
            orig_num_frames=x.shape[2],
            orig_height=x.shape[3],
            orig_width=x.shape[4],
            batch_size=x.shape[0],
            scale_grid=((1 / frame_rate) * 8, 32, 32),
            device=x.device,
        )

        if guiding_latent is not None:
            ts = torch.ones([x.shape[0], 1, x.shape[2], x.shape[3], x.shape[4]], device=x.device, dtype=x.dtype)
            input_ts = timestep.view([timestep.shape[0]] + [1] * (x.ndim - 1))
            ts *= input_ts
            ts[:, :, 0] = 0.0
            timestep = self.patchifier.patchify(ts)
            input_x = x.clone()
            x[:, :, 0] = guiding_latent[:, :, 0]

        orig_shape = list(x.shape)

        x = self.patchifier.patchify(x)

        x = self.patchify_proj(x)
        timestep = timestep * 1000.0

        attention_mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1]))
        attention_mask = attention_mask.masked_fill(attention_mask.to(torch.bool), float("-inf"))  # not sure about this
        # attention_mask = (context != 0).any(dim=2).to(dtype=x.dtype)

        pe = precompute_freqs_cis(indices_grid, dim=self.inner_dim, out_dtype=x.dtype)

        batch_size = x.shape[0]
        timestep, embedded_timestep = self.adaln_single(
            timestep.flatten(),
            {"resolution": None, "aspect_ratio": None},
            batch_size=batch_size,
            hidden_dtype=x.dtype,
        )
        # Second dimension is 1 or number of tokens (if timestep_per_token)
        timestep = timestep.view(batch_size, -1, timestep.shape[-1])
        embedded_timestep = embedded_timestep.view(
            batch_size, -1, embedded_timestep.shape[-1]
        )

        # 2. Blocks
        if self.caption_projection is not None:
            batch_size = x.shape[0]
            context = self.caption_projection(context)
            context = context.view(
                batch_size, -1, x.shape[-1]
            )

        blocks_replace = patches_replace.get("dit", {})
        for i, block in enumerate(self.transformer_blocks):
            if ("double_block", i) in blocks_replace:
                def block_wrap(args):
                    out = {}
                    out["img"] = block(args["img"], context=args["txt"], attention_mask=args["attention_mask"], timestep=args["vec"], pe=args["pe"])
                    return out

                out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "attention_mask": attention_mask, "vec": timestep, "pe": pe}, {"original_block": block_wrap})
                x = out["img"]
            else:
                x = block(
                    x,
                    context=context,
                    attention_mask=attention_mask,
                    timestep=timestep,
                    pe=pe
                )

        # 3. Output
        scale_shift_values = (
            self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + embedded_timestep[:, :, None]
        )
        shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
        x = self.norm_out(x)
        # Modulation
        x = x * (1 + scale) + shift
        x = self.proj_out(x)

        x = self.patchifier.unpatchify(
            latents=x,
            output_height=orig_shape[3],
            output_width=orig_shape[4],
            output_num_frames=orig_shape[2],
            out_channels=orig_shape[1] // math.prod(self.patchifier.patch_size),
        )

        if guiding_latent is not None:
            x[:, :, 0] = (input_x[:, :, 0] - guiding_latent[:, :, 0]) / input_ts[:, :, 0]

        # print("res", x)
        return x