File size: 7,294 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import torchaudio
import torch
import comfy.model_management
import folder_paths
import os
import io
import json
import struct
import random
import hashlib
from comfy.cli_args import args

class EmptyLatentAudio:
    def __init__(self):
        self.device = comfy.model_management.intermediate_device()

    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"seconds": ("FLOAT", {"default": 47.6, "min": 1.0, "max": 1000.0, "step": 0.1}),
                             "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}),
                             }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

    CATEGORY = "latent/audio"

    def generate(self, seconds, batch_size):
        length = round((seconds * 44100 / 2048) / 2) * 2
        latent = torch.zeros([batch_size, 64, length], device=self.device)
        return ({"samples":latent, "type": "audio"}, )

class VAEEncodeAudio:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "audio": ("AUDIO", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/audio"

    def encode(self, vae, audio):
        sample_rate = audio["sample_rate"]
        if 44100 != sample_rate:
            waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100)
        else:
            waveform = audio["waveform"]

        t = vae.encode(waveform.movedim(1, -1))
        return ({"samples":t}, )

class VAEDecodeAudio:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("AUDIO",)
    FUNCTION = "decode"

    CATEGORY = "latent/audio"

    def decode(self, vae, samples):
        audio = vae.decode(samples["samples"]).movedim(-1, 1)
        std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0
        std[std < 1.0] = 1.0
        audio /= std
        return ({"waveform": audio, "sample_rate": 44100}, )


def create_vorbis_comment_block(comment_dict, last_block):
    vendor_string = b'ComfyUI'
    vendor_length = len(vendor_string)

    comments = []
    for key, value in comment_dict.items():
        comment = f"{key}={value}".encode('utf-8')
        comments.append(struct.pack('<I', len(comment)) + comment)

    user_comment_list_length = len(comments)
    user_comments = b''.join(comments)

    comment_data = struct.pack('<I', vendor_length) + vendor_string + struct.pack('<I', user_comment_list_length) + user_comments
    if last_block:
        id = b'\x84'
    else:
        id = b'\x04'
    comment_block = id + struct.pack('>I', len(comment_data))[1:] + comment_data

    return comment_block

def insert_or_replace_vorbis_comment(flac_io, comment_dict):
    if len(comment_dict) == 0:
        return flac_io

    flac_io.seek(4)

    blocks = []
    last_block = False

    while not last_block:
        header = flac_io.read(4)
        last_block = (header[0] & 0x80) != 0
        block_type = header[0] & 0x7F
        block_length = struct.unpack('>I', b'\x00' + header[1:])[0]
        block_data = flac_io.read(block_length)

        if block_type == 4 or block_type == 1:
            pass
        else:
            header = bytes([(header[0] & (~0x80))]) + header[1:]
            blocks.append(header + block_data)

    blocks.append(create_vorbis_comment_block(comment_dict, last_block=True))

    new_flac_io = io.BytesIO()
    new_flac_io.write(b'fLaC')
    for block in blocks:
        new_flac_io.write(block)

    new_flac_io.write(flac_io.read())
    return new_flac_io


class SaveAudio:
    def __init__(self):
        self.output_dir = folder_paths.get_output_directory()
        self.type = "output"
        self.prefix_append = ""

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "audio": ("AUDIO", ),
                              "filename_prefix": ("STRING", {"default": "audio/ComfyUI"})},
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }

    RETURN_TYPES = ()
    FUNCTION = "save_audio"

    OUTPUT_NODE = True

    CATEGORY = "audio"

    def save_audio(self, audio, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
        filename_prefix += self.prefix_append
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
        results = list()

        metadata = {}
        if not args.disable_metadata:
            if prompt is not None:
                metadata["prompt"] = json.dumps(prompt)
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata[x] = json.dumps(extra_pnginfo[x])

        for (batch_number, waveform) in enumerate(audio["waveform"].cpu()):
            filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
            file = f"{filename_with_batch_num}_{counter:05}_.flac"

            buff = io.BytesIO()
            torchaudio.save(buff, waveform, audio["sample_rate"], format="FLAC")

            buff = insert_or_replace_vorbis_comment(buff, metadata)

            with open(os.path.join(full_output_folder, file), 'wb') as f:
                f.write(buff.getbuffer())

            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
            })
            counter += 1

        return { "ui": { "audio": results } }

class PreviewAudio(SaveAudio):
    def __init__(self):
        self.output_dir = folder_paths.get_temp_directory()
        self.type = "temp"
        self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))

    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"audio": ("AUDIO", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }

class LoadAudio:
    @classmethod
    def INPUT_TYPES(s):
        input_dir = folder_paths.get_input_directory()
        files = folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"])
        return {"required": {"audio": (sorted(files), {"audio_upload": True})}}

    CATEGORY = "audio"

    RETURN_TYPES = ("AUDIO", )
    FUNCTION = "load"

    def load(self, audio):
        audio_path = folder_paths.get_annotated_filepath(audio)
        waveform, sample_rate = torchaudio.load(audio_path)
        audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate}
        return (audio, )

    @classmethod
    def IS_CHANGED(s, audio):
        image_path = folder_paths.get_annotated_filepath(audio)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, audio):
        if not folder_paths.exists_annotated_filepath(audio):
            return "Invalid audio file: {}".format(audio)
        return True

NODE_CLASS_MAPPINGS = {
    "EmptyLatentAudio": EmptyLatentAudio,
    "VAEEncodeAudio": VAEEncodeAudio,
    "VAEDecodeAudio": VAEDecodeAudio,
    "SaveAudio": SaveAudio,
    "LoadAudio": LoadAudio,
    "PreviewAudio": PreviewAudio,
}