File size: 10,312 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import gradio as gr
from PIL import Image

# Import all the necessary functions from the original script
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
    try:
        return obj[index]
    except KeyError:
        return obj["result"][index]

# Add all the necessary setup functions from the original script
def find_path(name: str, path: str = None) -> str:
    if path is None:
        path = os.getcwd()
    if name in os.listdir(path):
        path_name = os.path.join(path, name)
        print(f"{name} found: {path_name}")
        return path_name
    parent_directory = os.path.dirname(path)
    if parent_directory == path:
        return None
    return find_path(name, parent_directory)

def add_comfyui_directory_to_sys_path() -> None:
    comfyui_path = find_path("ComfyUI")
    if comfyui_path is not None and os.path.isdir(comfyui_path):
        sys.path.append(comfyui_path)
        print(f"'{comfyui_path}' added to sys.path")

def add_extra_model_paths() -> None:
    try:
        from main import load_extra_path_config
    except ImportError:
        from utils.extra_config import load_extra_path_config
    extra_model_paths = find_path("extra_model_paths.yaml")
    if extra_model_paths is not None:
        load_extra_path_config(extra_model_paths)
    else:
        print("Could not find the extra_model_paths config file.")

# Initialize paths
add_comfyui_directory_to_sys_path()
add_extra_model_paths()

def import_custom_nodes() -> None:
    import asyncio
    import execution
    from nodes import init_extra_nodes
    import server
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    server_instance = server.PromptServer(loop)
    execution.PromptQueue(server_instance)
    init_extra_nodes()

# Import all necessary nodes
from nodes import (
    StyleModelLoader,
    VAEEncode,
    NODE_CLASS_MAPPINGS,
    LoadImage,
    CLIPVisionLoader,
    SaveImage,
    VAELoader,
    CLIPVisionEncode,
    DualCLIPLoader,
    EmptyLatentImage,
    VAEDecode,
    UNETLoader,
    CLIPTextEncode,
)

# Initialize all constant nodes and models in global context
import_custom_nodes()

# Global variables for preloaded models and constants
with torch.inference_mode():
    # Initialize constants
    intconstant = NODE_CLASS_MAPPINGS["INTConstant"]()
    CONST_1024 = intconstant.get_value(value=1024)
    
    # Load CLIP
    dualcliploader = DualCLIPLoader()
    CLIP_MODEL = dualcliploader.load_clip(
        clip_name1="t5/t5xxl_fp16.safetensors",
        clip_name2="clip_l.safetensors",
        type="flux",
    )
    
    # Load VAE
    vaeloader = VAELoader()
    VAE_MODEL = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors")
    
    # Load UNET
    unetloader = UNETLoader()
    UNET_MODEL = unetloader.load_unet(
        unet_name="flux1-depth-dev.safetensors", weight_dtype="default"
    )
    
    # Load CLIP Vision
    clipvisionloader = CLIPVisionLoader()
    CLIP_VISION_MODEL = clipvisionloader.load_clip(
        clip_name="sigclip_vision_patch14_384.safetensors"
    )
    
    # Load Style Model
    stylemodelloader = StyleModelLoader()
    STYLE_MODEL = stylemodelloader.load_style_model(
        style_model_name="flux1-redux-dev.safetensors"
    )
    
    # Initialize samplers
    ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]()
    SAMPLER = ksamplerselect.get_sampler(sampler_name="euler")
    
    # Initialize depth model
    downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS["DownloadAndLoadDepthAnythingV2Model"]()
    DEPTH_MODEL = downloadandloaddepthanythingv2model.loadmodel(
        model="depth_anything_v2_vitl_fp32.safetensors"
    )

def generate_image(prompt: str, structure_image: str, style_image: str, style_strength: float) -> str:
    """Main generation function that processes inputs and returns the path to the generated image."""
    
    with torch.inference_mode():
        # Set up CLIP
        cr_clip_input_switch = NODE_CLASS_MAPPINGS["CR Clip Input Switch"]()
        clip_switch = cr_clip_input_switch.switch(
            Input=1,
            clip1=get_value_at_index(CLIP_MODEL, 0),
            clip2=get_value_at_index(CLIP_MODEL, 0),
        )
        
        # Encode text
        cliptextencode = CLIPTextEncode()
        text_encoded = cliptextencode.encode(
            text=prompt,
            clip=get_value_at_index(clip_switch, 0),
        )
        empty_text = cliptextencode.encode(
            text="",
            clip=get_value_at_index(clip_switch, 0),
        )
        
        # Process structure image
        loadimage = LoadImage()
        structure_img = loadimage.load_image(image=structure_image)
        
        # Resize image
        imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]()
        resized_img = imageresize.execute(
            width=get_value_at_index(CONST_1024, 0),
            height=get_value_at_index(CONST_1024, 0),
            interpolation="bicubic",
            method="keep proportion",
            condition="always",
            multiple_of=16,
            image=get_value_at_index(structure_img, 0),
        )
        
        # Get image size
        getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]()
        size_info = getimagesizeandcount.getsize(
            image=get_value_at_index(resized_img, 0)
        )
        
        # Encode VAE
        vaeencode = VAEEncode()
        vae_encoded = vaeencode.encode(
            pixels=get_value_at_index(size_info, 0),
            vae=get_value_at_index(VAE_MODEL, 0),
        )
        
        # Process depth
        depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]()
        depth_processed = depthanything_v2.process(
            da_model=get_value_at_index(DEPTH_MODEL, 0),
            images=get_value_at_index(size_info, 0),
        )
        
        # Apply Flux guidance
        fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
        flux_guided = fluxguidance.append(
            guidance=15,
            conditioning=get_value_at_index(text_encoded, 0),
        )
        
        # Process style image
        style_img = loadimage.load_image(image=style_image)
        
        # Encode style with CLIP Vision
        clipvisionencode = CLIPVisionEncode()
        style_encoded = clipvisionencode.encode(
            crop="center",
            clip_vision=get_value_at_index(CLIP_VISION_MODEL, 0),
            image=get_value_at_index(style_img, 0),
        )
        
        # Set up conditioning
        instructpixtopixconditioning = NODE_CLASS_MAPPINGS["InstructPixToPixConditioning"]()
        conditioning = instructpixtopixconditioning.encode(
            positive=get_value_at_index(flux_guided, 0),
            negative=get_value_at_index(empty_text, 0),
            vae=get_value_at_index(VAE_MODEL, 0),
            pixels=get_value_at_index(depth_processed, 0),
        )
        
        # Apply style
        stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]()
        style_applied = stylemodelapplyadvanced.apply_stylemodel(
            strength=style_strength,
            conditioning=get_value_at_index(conditioning, 0),
            style_model=get_value_at_index(STYLE_MODEL, 0),
            clip_vision_output=get_value_at_index(style_encoded, 0),
        )
        
        # Set up empty latent
        emptylatentimage = EmptyLatentImage()
        empty_latent = emptylatentimage.generate(
            width=get_value_at_index(resized_img, 1),
            height=get_value_at_index(resized_img, 2),
            batch_size=1,
        )
        
        # Set up guidance
        basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]()
        guided = basicguider.get_guider(
            model=get_value_at_index(UNET_MODEL, 0),
            conditioning=get_value_at_index(style_applied, 0),
        )
        
        # Set up scheduler
        basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]()
        schedule = basicscheduler.get_sigmas(
            scheduler="simple",
            steps=28,
            denoise=1,
            model=get_value_at_index(UNET_MODEL, 0),
        )
        
        # Generate random noise
        randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
        noise = randomnoise.get_noise(noise_seed=random.randint(1, 2**64))
        
        # Sample
        samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
        sampled = samplercustomadvanced.sample(
            noise=get_value_at_index(noise, 0),
            guider=get_value_at_index(guided, 0),
            sampler=get_value_at_index(SAMPLER, 0),
            sigmas=get_value_at_index(schedule, 0),
            latent_image=get_value_at_index(empty_latent, 0),
        )
        
        # Decode VAE
        vaedecode = VAEDecode()
        decoded = vaedecode.decode(
            samples=get_value_at_index(sampled, 0),
            vae=get_value_at_index(VAE_MODEL, 0),
        )
        
        # Save image
        cr_text = NODE_CLASS_MAPPINGS["CR Text"]()
        prefix = cr_text.text_multiline(text="Flux_BFL_Depth_Redux")
        
        saveimage = SaveImage()
        saved = saveimage.save_images(
            filename_prefix=get_value_at_index(prefix, 0),
            images=get_value_at_index(decoded, 0),
        )
        
        return get_value_at_index(saved, 0)

# Create Gradio interface
with gr.Blocks() as app:
    gr.Markdown("# Image Generation with Style Transfer")
    
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
            structure_image = gr.Image(label="Structure Image", type="filepath")
            style_image = gr.Image(label="Style Image", type="filepath")
            style_strength = gr.Slider(minimum=0, maximum=1, value=0.5, label="Style Strength")
            generate_btn = gr.Button("Generate")
        
        with gr.Column():
            output_image = gr.Image(label="Generated Image")
    
    generate_btn.click(
        fn=generate_image,
        inputs=[prompt_input, structure_image, style_image, style_strength],
        outputs=[output_image]
    )

if __name__ == "__main__":
    app.launch()