Spaces:
Running
on
L40S
Running
on
L40S
File size: 8,184 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
from copy import deepcopy
from io import BytesIO
from urllib import request
import numpy
import os
from PIL import Image
import pytest
from pytest import fixture
import time
import torch
from typing import Union
import json
import subprocess
import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
import uuid
import urllib.request
import urllib.parse
from comfy.samplers import KSampler
"""
These tests generate and save images through a range of parameters
"""
class ComfyGraph:
def __init__(self,
graph: dict,
sampler_nodes: list[str],
):
self.graph = graph
self.sampler_nodes = sampler_nodes
def set_prompt(self, prompt, negative_prompt=None):
# Sets the prompt for the sampler nodes (eg. base and refiner)
for node in self.sampler_nodes:
prompt_node = self.graph[node]['inputs']['positive'][0]
self.graph[prompt_node]['inputs']['text'] = prompt
if negative_prompt:
negative_prompt_node = self.graph[node]['inputs']['negative'][0]
self.graph[negative_prompt_node]['inputs']['text'] = negative_prompt
def set_sampler_name(self, sampler_name:str, ):
# sets the sampler name for the sampler nodes (eg. base and refiner)
for node in self.sampler_nodes:
self.graph[node]['inputs']['sampler_name'] = sampler_name
def set_scheduler(self, scheduler:str):
# sets the sampler name for the sampler nodes (eg. base and refiner)
for node in self.sampler_nodes:
self.graph[node]['inputs']['scheduler'] = scheduler
def set_filename_prefix(self, prefix:str):
# sets the filename prefix for the save nodes
for node in self.graph:
if self.graph[node]['class_type'] == 'SaveImage':
self.graph[node]['inputs']['filename_prefix'] = prefix
class ComfyClient:
# From examples/websockets_api_example.py
def connect(self,
listen:str = '127.0.0.1',
port:Union[str,int] = 8188,
client_id: str = str(uuid.uuid4())
):
self.client_id = client_id
self.server_address = f"{listen}:{port}"
ws = websocket.WebSocket()
ws.connect("ws://{}/ws?clientId={}".format(self.server_address, self.client_id))
self.ws = ws
def queue_prompt(self, prompt):
p = {"prompt": prompt, "client_id": self.client_id}
data = json.dumps(p).encode('utf-8')
req = urllib.request.Request("http://{}/prompt".format(self.server_address), data=data)
return json.loads(urllib.request.urlopen(req).read())
def get_image(self, filename, subfolder, folder_type):
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
url_values = urllib.parse.urlencode(data)
with urllib.request.urlopen("http://{}/view?{}".format(self.server_address, url_values)) as response:
return response.read()
def get_history(self, prompt_id):
with urllib.request.urlopen("http://{}/history/{}".format(self.server_address, prompt_id)) as response:
return json.loads(response.read())
def get_images(self, graph, save=True):
prompt = graph
if not save:
# Replace save nodes with preview nodes
prompt_str = json.dumps(prompt)
prompt_str = prompt_str.replace('SaveImage', 'PreviewImage')
prompt = json.loads(prompt_str)
prompt_id = self.queue_prompt(prompt)['prompt_id']
output_images = {}
while True:
out = self.ws.recv()
if isinstance(out, str):
message = json.loads(out)
if message['type'] == 'executing':
data = message['data']
if data['node'] is None and data['prompt_id'] == prompt_id:
break #Execution is done
else:
continue #previews are binary data
history = self.get_history(prompt_id)[prompt_id]
for node_id in history['outputs']:
node_output = history['outputs'][node_id]
images_output = []
if 'images' in node_output:
for image in node_output['images']:
image_data = self.get_image(image['filename'], image['subfolder'], image['type'])
images_output.append(image_data)
output_images[node_id] = images_output
return output_images
#
# Initialize graphs
#
default_graph_file = 'tests/inference/graphs/default_graph_sdxl1_0.json'
with open(default_graph_file, 'r') as file:
default_graph = json.loads(file.read())
DEFAULT_COMFY_GRAPH = ComfyGraph(graph=default_graph, sampler_nodes=['10','14'])
DEFAULT_COMFY_GRAPH_ID = os.path.splitext(os.path.basename(default_graph_file))[0]
#
# Loop through these variables
#
comfy_graph_list = [DEFAULT_COMFY_GRAPH]
comfy_graph_ids = [DEFAULT_COMFY_GRAPH_ID]
prompt_list = [
'a painting of a cat',
]
sampler_list = KSampler.SAMPLERS
scheduler_list = KSampler.SCHEDULERS
@pytest.mark.inference
@pytest.mark.parametrize("sampler", sampler_list)
@pytest.mark.parametrize("scheduler", scheduler_list)
@pytest.mark.parametrize("prompt", prompt_list)
class TestInference:
#
# Initialize server and client
#
@fixture(scope="class", autouse=True)
def _server(self, args_pytest):
# Start server
p = subprocess.Popen([
'python','main.py',
'--output-directory', args_pytest["output_dir"],
'--listen', args_pytest["listen"],
'--port', str(args_pytest["port"]),
])
yield
p.kill()
torch.cuda.empty_cache()
def start_client(self, listen:str, port:int):
# Start client
comfy_client = ComfyClient()
# Connect to server (with retries)
n_tries = 5
for i in range(n_tries):
time.sleep(4)
try:
comfy_client.connect(listen=listen, port=port)
except ConnectionRefusedError as e:
print(e)
print(f"({i+1}/{n_tries}) Retrying...")
else:
break
return comfy_client
#
# Client and graph fixtures with server warmup
#
# Returns a "_client_graph", which is client-graph pair corresponding to an initialized server
# The "graph" is the default graph
@fixture(scope="class", params=comfy_graph_list, ids=comfy_graph_ids, autouse=True)
def _client_graph(self, request, args_pytest, _server) -> (ComfyClient, ComfyGraph):
comfy_graph = request.param
# Start client
comfy_client = self.start_client(args_pytest["listen"], args_pytest["port"])
# Warm up pipeline
comfy_client.get_images(graph=comfy_graph.graph, save=False)
yield comfy_client, comfy_graph
del comfy_client
del comfy_graph
torch.cuda.empty_cache()
@fixture
def client(self, _client_graph):
client = _client_graph[0]
yield client
@fixture
def comfy_graph(self, _client_graph):
# avoid mutating the graph
graph = deepcopy(_client_graph[1])
yield graph
def test_comfy(
self,
client,
comfy_graph,
sampler,
scheduler,
prompt,
request
):
test_info = request.node.name
comfy_graph.set_filename_prefix(test_info)
# Settings for comfy graph
comfy_graph.set_sampler_name(sampler)
comfy_graph.set_scheduler(scheduler)
comfy_graph.set_prompt(prompt)
# Generate
images = client.get_images(comfy_graph.graph)
assert len(images) != 0, "No images generated"
# assert all images are not blank
for images_output in images.values():
for image_data in images_output:
pil_image = Image.open(BytesIO(image_data))
assert numpy.array(pil_image).any() != 0, "Image is blank"
|