Spaces:
Running
on
L40S
Running
on
L40S
File size: 24,287 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
from io import BytesIO
import numpy
from PIL import Image
import pytest
from pytest import fixture
import time
import torch
from typing import Union, Dict
import json
import subprocess
import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
import uuid
import urllib.request
import urllib.parse
import urllib.error
from comfy_execution.graph_utils import GraphBuilder, Node
class RunResult:
def __init__(self, prompt_id: str):
self.outputs: Dict[str,Dict] = {}
self.runs: Dict[str,bool] = {}
self.prompt_id: str = prompt_id
def get_output(self, node: Node):
return self.outputs.get(node.id, None)
def did_run(self, node: Node):
return self.runs.get(node.id, False)
def get_images(self, node: Node):
output = self.get_output(node)
if output is None:
return []
return output.get('image_objects', [])
def get_prompt_id(self):
return self.prompt_id
class ComfyClient:
def __init__(self):
self.test_name = ""
def connect(self,
listen:str = '127.0.0.1',
port:Union[str,int] = 8188,
client_id: str = str(uuid.uuid4())
):
self.client_id = client_id
self.server_address = f"{listen}:{port}"
ws = websocket.WebSocket()
ws.connect("ws://{}/ws?clientId={}".format(self.server_address, self.client_id))
self.ws = ws
def queue_prompt(self, prompt):
p = {"prompt": prompt, "client_id": self.client_id}
data = json.dumps(p).encode('utf-8')
req = urllib.request.Request("http://{}/prompt".format(self.server_address), data=data)
return json.loads(urllib.request.urlopen(req).read())
def get_image(self, filename, subfolder, folder_type):
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
url_values = urllib.parse.urlencode(data)
with urllib.request.urlopen("http://{}/view?{}".format(self.server_address, url_values)) as response:
return response.read()
def get_history(self, prompt_id):
with urllib.request.urlopen("http://{}/history/{}".format(self.server_address, prompt_id)) as response:
return json.loads(response.read())
def set_test_name(self, name):
self.test_name = name
def run(self, graph):
prompt = graph.finalize()
for node in graph.nodes.values():
if node.class_type == 'SaveImage':
node.inputs['filename_prefix'] = self.test_name
prompt_id = self.queue_prompt(prompt)['prompt_id']
result = RunResult(prompt_id)
while True:
out = self.ws.recv()
if isinstance(out, str):
message = json.loads(out)
if message['type'] == 'executing':
data = message['data']
if data['prompt_id'] != prompt_id:
continue
if data['node'] is None:
break
result.runs[data['node']] = True
elif message['type'] == 'execution_error':
raise Exception(message['data'])
elif message['type'] == 'execution_cached':
pass # Probably want to store this off for testing
history = self.get_history(prompt_id)[prompt_id]
for node_id in history['outputs']:
node_output = history['outputs'][node_id]
result.outputs[node_id] = node_output
images_output = []
if 'images' in node_output:
for image in node_output['images']:
image_data = self.get_image(image['filename'], image['subfolder'], image['type'])
image_obj = Image.open(BytesIO(image_data))
images_output.append(image_obj)
node_output['image_objects'] = images_output
return result
#
# Loop through these variables
#
@pytest.mark.execution
class TestExecution:
#
# Initialize server and client
#
@fixture(scope="class", autouse=True, params=[
# (use_lru, lru_size)
(False, 0),
(True, 0),
(True, 100),
])
def _server(self, args_pytest, request):
# Start server
pargs = [
'python','main.py',
'--output-directory', args_pytest["output_dir"],
'--listen', args_pytest["listen"],
'--port', str(args_pytest["port"]),
'--extra-model-paths-config', 'tests/inference/extra_model_paths.yaml',
]
use_lru, lru_size = request.param
if use_lru:
pargs += ['--cache-lru', str(lru_size)]
print("Running server with args:", pargs)
p = subprocess.Popen(pargs)
yield
p.kill()
torch.cuda.empty_cache()
def start_client(self, listen:str, port:int):
# Start client
comfy_client = ComfyClient()
# Connect to server (with retries)
n_tries = 5
for i in range(n_tries):
time.sleep(4)
try:
comfy_client.connect(listen=listen, port=port)
except ConnectionRefusedError as e:
print(e)
print(f"({i+1}/{n_tries}) Retrying...")
else:
break
return comfy_client
@fixture(scope="class", autouse=True)
def shared_client(self, args_pytest, _server):
client = self.start_client(args_pytest["listen"], args_pytest["port"])
yield client
del client
torch.cuda.empty_cache()
@fixture
def client(self, shared_client, request):
shared_client.set_test_name(f"execution[{request.node.name}]")
yield shared_client
@fixture
def builder(self, request):
yield GraphBuilder(prefix=request.node.name)
def test_lazy_input(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
mask = g.node("StubMask", value=0.0, height=512, width=512, batch_size=1)
lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
output = g.node("SaveImage", images=lazy_mix.out(0))
result = client.run(g)
result_image = result.get_images(output)[0]
assert numpy.array(result_image).any() == 0, "Image should be black"
assert result.did_run(input1)
assert not result.did_run(input2)
assert result.did_run(mask)
assert result.did_run(lazy_mix)
def test_full_cache(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
input2 = g.node("StubImage", content="NOISE", height=512, width=512, batch_size=1)
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
g.node("SaveImage", images=lazy_mix.out(0))
client.run(g)
result2 = client.run(g)
for node_id, node in g.nodes.items():
assert not result2.did_run(node), f"Node {node_id} ran, but should have been cached"
def test_partial_cache(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
input2 = g.node("StubImage", content="NOISE", height=512, width=512, batch_size=1)
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
g.node("SaveImage", images=lazy_mix.out(0))
client.run(g)
mask.inputs['value'] = 0.4
result2 = client.run(g)
assert not result2.did_run(input1), "Input1 should have been cached"
assert not result2.did_run(input2), "Input2 should have been cached"
def test_error(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
# Different size of the two images
input2 = g.node("StubImage", content="NOISE", height=256, width=256, batch_size=1)
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
g.node("SaveImage", images=lazy_mix.out(0))
try:
client.run(g)
assert False, "Should have raised an error"
except Exception as e:
assert 'prompt_id' in e.args[0], f"Did not get back a proper error message: {e}"
@pytest.mark.parametrize("test_value, expect_error", [
(5, True),
("foo", True),
(5.0, False),
])
def test_validation_error_literal(self, test_value, expect_error, client: ComfyClient, builder: GraphBuilder):
g = builder
validation1 = g.node("TestCustomValidation1", input1=test_value, input2=3.0)
g.node("SaveImage", images=validation1.out(0))
if expect_error:
with pytest.raises(urllib.error.HTTPError):
client.run(g)
else:
client.run(g)
@pytest.mark.parametrize("test_type, test_value", [
("StubInt", 5),
("StubFloat", 5.0)
])
def test_validation_error_edge1(self, test_type, test_value, client: ComfyClient, builder: GraphBuilder):
g = builder
stub = g.node(test_type, value=test_value)
validation1 = g.node("TestCustomValidation1", input1=stub.out(0), input2=3.0)
g.node("SaveImage", images=validation1.out(0))
with pytest.raises(urllib.error.HTTPError):
client.run(g)
@pytest.mark.parametrize("test_type, test_value, expect_error", [
("StubInt", 5, True),
("StubFloat", 5.0, False)
])
def test_validation_error_edge2(self, test_type, test_value, expect_error, client: ComfyClient, builder: GraphBuilder):
g = builder
stub = g.node(test_type, value=test_value)
validation2 = g.node("TestCustomValidation2", input1=stub.out(0), input2=3.0)
g.node("SaveImage", images=validation2.out(0))
if expect_error:
with pytest.raises(urllib.error.HTTPError):
client.run(g)
else:
client.run(g)
@pytest.mark.parametrize("test_type, test_value, expect_error", [
("StubInt", 5, True),
("StubFloat", 5.0, False)
])
def test_validation_error_edge3(self, test_type, test_value, expect_error, client: ComfyClient, builder: GraphBuilder):
g = builder
stub = g.node(test_type, value=test_value)
validation3 = g.node("TestCustomValidation3", input1=stub.out(0), input2=3.0)
g.node("SaveImage", images=validation3.out(0))
if expect_error:
with pytest.raises(urllib.error.HTTPError):
client.run(g)
else:
client.run(g)
@pytest.mark.parametrize("test_type, test_value, expect_error", [
("StubInt", 5, True),
("StubFloat", 5.0, False)
])
def test_validation_error_edge4(self, test_type, test_value, expect_error, client: ComfyClient, builder: GraphBuilder):
g = builder
stub = g.node(test_type, value=test_value)
validation4 = g.node("TestCustomValidation4", input1=stub.out(0), input2=3.0)
g.node("SaveImage", images=validation4.out(0))
if expect_error:
with pytest.raises(urllib.error.HTTPError):
client.run(g)
else:
client.run(g)
@pytest.mark.parametrize("test_value1, test_value2, expect_error", [
(0.0, 0.5, False),
(0.0, 5.0, False),
(0.0, 7.0, True)
])
def test_validation_error_kwargs(self, test_value1, test_value2, expect_error, client: ComfyClient, builder: GraphBuilder):
g = builder
validation5 = g.node("TestCustomValidation5", input1=test_value1, input2=test_value2)
g.node("SaveImage", images=validation5.out(0))
if expect_error:
with pytest.raises(urllib.error.HTTPError):
client.run(g)
else:
client.run(g)
def test_cycle_error(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
lazy_mix1 = g.node("TestLazyMixImages", image1=input1.out(0), mask=mask.out(0))
lazy_mix2 = g.node("TestLazyMixImages", image1=lazy_mix1.out(0), image2=input2.out(0), mask=mask.out(0))
g.node("SaveImage", images=lazy_mix2.out(0))
# When the cycle exists on initial submission, it should raise a validation error
with pytest.raises(urllib.error.HTTPError):
client.run(g)
def test_dynamic_cycle_error(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
generator = g.node("TestDynamicDependencyCycle", input1=input1.out(0), input2=input2.out(0))
g.node("SaveImage", images=generator.out(0))
# When the cycle is in a graph that is generated dynamically, it should raise a runtime error
try:
client.run(g)
assert False, "Should have raised an error"
except Exception as e:
assert 'prompt_id' in e.args[0], f"Did not get back a proper error message: {e}"
assert e.args[0]['node_id'] == generator.id, "Error should have been on the generator node"
def test_missing_node_error(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
input2 = g.node("StubImage", id="removeme", content="WHITE", height=512, width=512, batch_size=1)
input3 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
mix1 = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
mix2 = g.node("TestLazyMixImages", image1=input1.out(0), image2=input3.out(0), mask=mask.out(0))
# We have multiple outputs. The first is invalid, but the second is valid
g.node("SaveImage", images=mix1.out(0))
g.node("SaveImage", images=mix2.out(0))
g.remove_node("removeme")
client.run(g)
# Add back in the missing node to make sure the error doesn't break the server
input2 = g.node("StubImage", id="removeme", content="WHITE", height=512, width=512, batch_size=1)
client.run(g)
def test_custom_is_changed(self, client: ComfyClient, builder: GraphBuilder):
g = builder
# Creating the nodes in this specific order previously caused a bug
save = g.node("SaveImage")
is_changed = g.node("TestCustomIsChanged", should_change=False)
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
save.set_input('images', is_changed.out(0))
is_changed.set_input('image', input1.out(0))
result1 = client.run(g)
result2 = client.run(g)
is_changed.set_input('should_change', True)
result3 = client.run(g)
result4 = client.run(g)
assert result1.did_run(is_changed), "is_changed should have been run"
assert not result2.did_run(is_changed), "is_changed should have been cached"
assert result3.did_run(is_changed), "is_changed should have been re-run"
assert result4.did_run(is_changed), "is_changed should not have been cached"
def test_undeclared_inputs(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
input3 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
input4 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
average = g.node("TestVariadicAverage", input1=input1.out(0), input2=input2.out(0), input3=input3.out(0), input4=input4.out(0))
output = g.node("SaveImage", images=average.out(0))
result = client.run(g)
result_image = result.get_images(output)[0]
expected = 255 // 4
assert numpy.array(result_image).min() == expected and numpy.array(result_image).max() == expected, "Image should be grey"
def test_for_loop(self, client: ComfyClient, builder: GraphBuilder):
g = builder
iterations = 4
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
is_changed = g.node("TestCustomIsChanged", should_change=True, image=input2.out(0))
for_open = g.node("TestForLoopOpen", remaining=iterations, initial_value1=is_changed.out(0))
average = g.node("TestVariadicAverage", input1=input1.out(0), input2=for_open.out(2))
for_close = g.node("TestForLoopClose", flow_control=for_open.out(0), initial_value1=average.out(0))
output = g.node("SaveImage", images=for_close.out(0))
for iterations in range(1, 5):
for_open.set_input('remaining', iterations)
result = client.run(g)
result_image = result.get_images(output)[0]
expected = 255 // (2 ** iterations)
assert numpy.array(result_image).min() == expected and numpy.array(result_image).max() == expected, "Image should be grey"
assert result.did_run(is_changed)
def test_mixed_expansion_returns(self, client: ComfyClient, builder: GraphBuilder):
g = builder
val_list = g.node("TestMakeListNode", value1=0.1, value2=0.2, value3=0.3)
mixed = g.node("TestMixedExpansionReturns", input1=val_list.out(0))
output_dynamic = g.node("SaveImage", images=mixed.out(0))
output_literal = g.node("SaveImage", images=mixed.out(1))
result = client.run(g)
images_dynamic = result.get_images(output_dynamic)
assert len(images_dynamic) == 3, "Should have 2 images"
assert numpy.array(images_dynamic[0]).min() == 25 and numpy.array(images_dynamic[0]).max() == 25, "First image should be 0.1"
assert numpy.array(images_dynamic[1]).min() == 51 and numpy.array(images_dynamic[1]).max() == 51, "Second image should be 0.2"
assert numpy.array(images_dynamic[2]).min() == 76 and numpy.array(images_dynamic[2]).max() == 76, "Third image should be 0.3"
images_literal = result.get_images(output_literal)
assert len(images_literal) == 3, "Should have 2 images"
for i in range(3):
assert numpy.array(images_literal[i]).min() == 255 and numpy.array(images_literal[i]).max() == 255, "All images should be white"
def test_mixed_lazy_results(self, client: ComfyClient, builder: GraphBuilder):
g = builder
val_list = g.node("TestMakeListNode", value1=0.0, value2=0.5, value3=1.0)
mask = g.node("StubMask", value=val_list.out(0), height=512, width=512, batch_size=1)
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
rebatch = g.node("RebatchImages", images=mix.out(0), batch_size=3)
output = g.node("SaveImage", images=rebatch.out(0))
result = client.run(g)
images = result.get_images(output)
assert len(images) == 3, "Should have 3 image"
assert numpy.array(images[0]).min() == 0 and numpy.array(images[0]).max() == 0, "First image should be 0.0"
assert numpy.array(images[1]).min() == 127 and numpy.array(images[1]).max() == 127, "Second image should be 0.5"
assert numpy.array(images[2]).min() == 255 and numpy.array(images[2]).max() == 255, "Third image should be 1.0"
def test_output_reuse(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
output1 = g.node("SaveImage", images=input1.out(0))
output2 = g.node("SaveImage", images=input1.out(0))
result = client.run(g)
images1 = result.get_images(output1)
images2 = result.get_images(output2)
assert len(images1) == 1, "Should have 1 image"
assert len(images2) == 1, "Should have 1 image"
# This tests that only constant outputs are used in the call to `IS_CHANGED`
def test_is_changed_with_outputs(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubConstantImage", value=0.5, height=512, width=512, batch_size=1)
test_node = g.node("TestIsChangedWithConstants", image=input1.out(0), value=0.5)
output = g.node("PreviewImage", images=test_node.out(0))
result = client.run(g)
images = result.get_images(output)
assert len(images) == 1, "Should have 1 image"
assert numpy.array(images[0]).min() == 63 and numpy.array(images[0]).max() == 63, "Image should have value 0.25"
result = client.run(g)
images = result.get_images(output)
assert len(images) == 1, "Should have 1 image"
assert numpy.array(images[0]).min() == 63 and numpy.array(images[0]).max() == 63, "Image should have value 0.25"
assert not result.did_run(test_node), "The execution should have been cached"
# This tests that nodes with OUTPUT_IS_LIST function correctly when they receive an ExecutionBlocker
# as input. We also test that when that list (containing an ExecutionBlocker) is passed to a node,
# only that one entry in the list is blocked.
def test_execution_block_list_output(self, client: ComfyClient, builder: GraphBuilder):
g = builder
image1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
image2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
image3 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
image_list = g.node("TestMakeListNode", value1=image1.out(0), value2=image2.out(0), value3=image3.out(0))
int1 = g.node("StubInt", value=1)
int2 = g.node("StubInt", value=2)
int3 = g.node("StubInt", value=3)
int_list = g.node("TestMakeListNode", value1=int1.out(0), value2=int2.out(0), value3=int3.out(0))
compare = g.node("TestIntConditions", a=int_list.out(0), b=2, operation="==")
blocker = g.node("TestExecutionBlocker", input=image_list.out(0), block=compare.out(0), verbose=False)
list_output = g.node("TestMakeListNode", value1=blocker.out(0))
output = g.node("PreviewImage", images=list_output.out(0))
result = client.run(g)
assert result.did_run(output), "The execution should have run"
images = result.get_images(output)
assert len(images) == 2, "Should have 2 images"
assert numpy.array(images[0]).min() == 0 and numpy.array(images[0]).max() == 0, "First image should be black"
assert numpy.array(images[1]).min() == 0 and numpy.array(images[1]).max() == 0, "Second image should also be black"
|