Spaces:
Running
on
L40S
Running
on
L40S
File size: 37,465 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 |
"""
This file is part of ComfyUI.
Copyright (C) 2024 Comfy
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import torch
import math
import struct
import comfy.checkpoint_pickle
import safetensors.torch
import numpy as np
from PIL import Image
import logging
import itertools
def load_torch_file(ckpt, safe_load=False, device=None):
if device is None:
device = torch.device("cpu")
if ckpt.lower().endswith(".safetensors") or ckpt.lower().endswith(".sft"):
sd = safetensors.torch.load_file(ckpt, device=device.type)
else:
if safe_load:
if not 'weights_only' in torch.load.__code__.co_varnames:
logging.warning("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.")
safe_load = False
if safe_load:
pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
else:
pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle)
if "global_step" in pl_sd:
logging.debug(f"Global Step: {pl_sd['global_step']}")
if "state_dict" in pl_sd:
sd = pl_sd["state_dict"]
else:
sd = pl_sd
return sd
def save_torch_file(sd, ckpt, metadata=None):
if metadata is not None:
safetensors.torch.save_file(sd, ckpt, metadata=metadata)
else:
safetensors.torch.save_file(sd, ckpt)
def calculate_parameters(sd, prefix=""):
params = 0
for k in sd.keys():
if k.startswith(prefix):
w = sd[k]
params += w.nelement()
return params
def weight_dtype(sd, prefix=""):
dtypes = {}
for k in sd.keys():
if k.startswith(prefix):
w = sd[k]
dtypes[w.dtype] = dtypes.get(w.dtype, 0) + w.numel()
if len(dtypes) == 0:
return None
return max(dtypes, key=dtypes.get)
def state_dict_key_replace(state_dict, keys_to_replace):
for x in keys_to_replace:
if x in state_dict:
state_dict[keys_to_replace[x]] = state_dict.pop(x)
return state_dict
def state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=False):
if filter_keys:
out = {}
else:
out = state_dict
for rp in replace_prefix:
replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys())))
for x in replace:
w = state_dict.pop(x[0])
out[x[1]] = w
return out
def transformers_convert(sd, prefix_from, prefix_to, number):
keys_to_replace = {
"{}positional_embedding": "{}embeddings.position_embedding.weight",
"{}token_embedding.weight": "{}embeddings.token_embedding.weight",
"{}ln_final.weight": "{}final_layer_norm.weight",
"{}ln_final.bias": "{}final_layer_norm.bias",
}
for k in keys_to_replace:
x = k.format(prefix_from)
if x in sd:
sd[keys_to_replace[k].format(prefix_to)] = sd.pop(x)
resblock_to_replace = {
"ln_1": "layer_norm1",
"ln_2": "layer_norm2",
"mlp.c_fc": "mlp.fc1",
"mlp.c_proj": "mlp.fc2",
"attn.out_proj": "self_attn.out_proj",
}
for resblock in range(number):
for x in resblock_to_replace:
for y in ["weight", "bias"]:
k = "{}transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y)
k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
if k in sd:
sd[k_to] = sd.pop(k)
for y in ["weight", "bias"]:
k_from = "{}transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y)
if k_from in sd:
weights = sd.pop(k_from)
shape_from = weights.shape[0] // 3
for x in range(3):
p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y)
sd[k_to] = weights[shape_from*x:shape_from*(x + 1)]
return sd
def clip_text_transformers_convert(sd, prefix_from, prefix_to):
sd = transformers_convert(sd, prefix_from, "{}text_model.".format(prefix_to), 32)
tp = "{}text_projection.weight".format(prefix_from)
if tp in sd:
sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp)
tp = "{}text_projection".format(prefix_from)
if tp in sd:
sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp).transpose(0, 1).contiguous()
return sd
UNET_MAP_ATTENTIONS = {
"proj_in.weight",
"proj_in.bias",
"proj_out.weight",
"proj_out.bias",
"norm.weight",
"norm.bias",
}
TRANSFORMER_BLOCKS = {
"norm1.weight",
"norm1.bias",
"norm2.weight",
"norm2.bias",
"norm3.weight",
"norm3.bias",
"attn1.to_q.weight",
"attn1.to_k.weight",
"attn1.to_v.weight",
"attn1.to_out.0.weight",
"attn1.to_out.0.bias",
"attn2.to_q.weight",
"attn2.to_k.weight",
"attn2.to_v.weight",
"attn2.to_out.0.weight",
"attn2.to_out.0.bias",
"ff.net.0.proj.weight",
"ff.net.0.proj.bias",
"ff.net.2.weight",
"ff.net.2.bias",
}
UNET_MAP_RESNET = {
"in_layers.2.weight": "conv1.weight",
"in_layers.2.bias": "conv1.bias",
"emb_layers.1.weight": "time_emb_proj.weight",
"emb_layers.1.bias": "time_emb_proj.bias",
"out_layers.3.weight": "conv2.weight",
"out_layers.3.bias": "conv2.bias",
"skip_connection.weight": "conv_shortcut.weight",
"skip_connection.bias": "conv_shortcut.bias",
"in_layers.0.weight": "norm1.weight",
"in_layers.0.bias": "norm1.bias",
"out_layers.0.weight": "norm2.weight",
"out_layers.0.bias": "norm2.bias",
}
UNET_MAP_BASIC = {
("label_emb.0.0.weight", "class_embedding.linear_1.weight"),
("label_emb.0.0.bias", "class_embedding.linear_1.bias"),
("label_emb.0.2.weight", "class_embedding.linear_2.weight"),
("label_emb.0.2.bias", "class_embedding.linear_2.bias"),
("label_emb.0.0.weight", "add_embedding.linear_1.weight"),
("label_emb.0.0.bias", "add_embedding.linear_1.bias"),
("label_emb.0.2.weight", "add_embedding.linear_2.weight"),
("label_emb.0.2.bias", "add_embedding.linear_2.bias"),
("input_blocks.0.0.weight", "conv_in.weight"),
("input_blocks.0.0.bias", "conv_in.bias"),
("out.0.weight", "conv_norm_out.weight"),
("out.0.bias", "conv_norm_out.bias"),
("out.2.weight", "conv_out.weight"),
("out.2.bias", "conv_out.bias"),
("time_embed.0.weight", "time_embedding.linear_1.weight"),
("time_embed.0.bias", "time_embedding.linear_1.bias"),
("time_embed.2.weight", "time_embedding.linear_2.weight"),
("time_embed.2.bias", "time_embedding.linear_2.bias")
}
def unet_to_diffusers(unet_config):
if "num_res_blocks" not in unet_config:
return {}
num_res_blocks = unet_config["num_res_blocks"]
channel_mult = unet_config["channel_mult"]
transformer_depth = unet_config["transformer_depth"][:]
transformer_depth_output = unet_config["transformer_depth_output"][:]
num_blocks = len(channel_mult)
transformers_mid = unet_config.get("transformer_depth_middle", None)
diffusers_unet_map = {}
for x in range(num_blocks):
n = 1 + (num_res_blocks[x] + 1) * x
for i in range(num_res_blocks[x]):
for b in UNET_MAP_RESNET:
diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b)
num_transformers = transformer_depth.pop(0)
if num_transformers > 0:
for b in UNET_MAP_ATTENTIONS:
diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b)
for t in range(num_transformers):
for b in TRANSFORMER_BLOCKS:
diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
n += 1
for k in ["weight", "bias"]:
diffusers_unet_map["down_blocks.{}.downsamplers.0.conv.{}".format(x, k)] = "input_blocks.{}.0.op.{}".format(n, k)
i = 0
for b in UNET_MAP_ATTENTIONS:
diffusers_unet_map["mid_block.attentions.{}.{}".format(i, b)] = "middle_block.1.{}".format(b)
for t in range(transformers_mid):
for b in TRANSFORMER_BLOCKS:
diffusers_unet_map["mid_block.attentions.{}.transformer_blocks.{}.{}".format(i, t, b)] = "middle_block.1.transformer_blocks.{}.{}".format(t, b)
for i, n in enumerate([0, 2]):
for b in UNET_MAP_RESNET:
diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b)
num_res_blocks = list(reversed(num_res_blocks))
for x in range(num_blocks):
n = (num_res_blocks[x] + 1) * x
l = num_res_blocks[x] + 1
for i in range(l):
c = 0
for b in UNET_MAP_RESNET:
diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b)
c += 1
num_transformers = transformer_depth_output.pop()
if num_transformers > 0:
c += 1
for b in UNET_MAP_ATTENTIONS:
diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b)
for t in range(num_transformers):
for b in TRANSFORMER_BLOCKS:
diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
if i == l - 1:
for k in ["weight", "bias"]:
diffusers_unet_map["up_blocks.{}.upsamplers.0.conv.{}".format(x, k)] = "output_blocks.{}.{}.conv.{}".format(n, c, k)
n += 1
for k in UNET_MAP_BASIC:
diffusers_unet_map[k[1]] = k[0]
return diffusers_unet_map
def swap_scale_shift(weight):
shift, scale = weight.chunk(2, dim=0)
new_weight = torch.cat([scale, shift], dim=0)
return new_weight
MMDIT_MAP_BASIC = {
("context_embedder.bias", "context_embedder.bias"),
("context_embedder.weight", "context_embedder.weight"),
("t_embedder.mlp.0.bias", "time_text_embed.timestep_embedder.linear_1.bias"),
("t_embedder.mlp.0.weight", "time_text_embed.timestep_embedder.linear_1.weight"),
("t_embedder.mlp.2.bias", "time_text_embed.timestep_embedder.linear_2.bias"),
("t_embedder.mlp.2.weight", "time_text_embed.timestep_embedder.linear_2.weight"),
("x_embedder.proj.bias", "pos_embed.proj.bias"),
("x_embedder.proj.weight", "pos_embed.proj.weight"),
("y_embedder.mlp.0.bias", "time_text_embed.text_embedder.linear_1.bias"),
("y_embedder.mlp.0.weight", "time_text_embed.text_embedder.linear_1.weight"),
("y_embedder.mlp.2.bias", "time_text_embed.text_embedder.linear_2.bias"),
("y_embedder.mlp.2.weight", "time_text_embed.text_embedder.linear_2.weight"),
("pos_embed", "pos_embed.pos_embed"),
("final_layer.adaLN_modulation.1.bias", "norm_out.linear.bias", swap_scale_shift),
("final_layer.adaLN_modulation.1.weight", "norm_out.linear.weight", swap_scale_shift),
("final_layer.linear.bias", "proj_out.bias"),
("final_layer.linear.weight", "proj_out.weight"),
}
MMDIT_MAP_BLOCK = {
("context_block.adaLN_modulation.1.bias", "norm1_context.linear.bias"),
("context_block.adaLN_modulation.1.weight", "norm1_context.linear.weight"),
("context_block.attn.proj.bias", "attn.to_add_out.bias"),
("context_block.attn.proj.weight", "attn.to_add_out.weight"),
("context_block.mlp.fc1.bias", "ff_context.net.0.proj.bias"),
("context_block.mlp.fc1.weight", "ff_context.net.0.proj.weight"),
("context_block.mlp.fc2.bias", "ff_context.net.2.bias"),
("context_block.mlp.fc2.weight", "ff_context.net.2.weight"),
("context_block.attn.ln_q.weight", "attn.norm_added_q.weight"),
("context_block.attn.ln_k.weight", "attn.norm_added_k.weight"),
("x_block.adaLN_modulation.1.bias", "norm1.linear.bias"),
("x_block.adaLN_modulation.1.weight", "norm1.linear.weight"),
("x_block.attn.proj.bias", "attn.to_out.0.bias"),
("x_block.attn.proj.weight", "attn.to_out.0.weight"),
("x_block.attn.ln_q.weight", "attn.norm_q.weight"),
("x_block.attn.ln_k.weight", "attn.norm_k.weight"),
("x_block.attn2.proj.bias", "attn2.to_out.0.bias"),
("x_block.attn2.proj.weight", "attn2.to_out.0.weight"),
("x_block.attn2.ln_q.weight", "attn2.norm_q.weight"),
("x_block.attn2.ln_k.weight", "attn2.norm_k.weight"),
("x_block.mlp.fc1.bias", "ff.net.0.proj.bias"),
("x_block.mlp.fc1.weight", "ff.net.0.proj.weight"),
("x_block.mlp.fc2.bias", "ff.net.2.bias"),
("x_block.mlp.fc2.weight", "ff.net.2.weight"),
}
def mmdit_to_diffusers(mmdit_config, output_prefix=""):
key_map = {}
depth = mmdit_config.get("depth", 0)
num_blocks = mmdit_config.get("num_blocks", depth)
for i in range(num_blocks):
block_from = "transformer_blocks.{}".format(i)
block_to = "{}joint_blocks.{}".format(output_prefix, i)
offset = depth * 64
for end in ("weight", "bias"):
k = "{}.attn.".format(block_from)
qkv = "{}.x_block.attn.qkv.{}".format(block_to, end)
key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, offset))
key_map["{}to_k.{}".format(k, end)] = (qkv, (0, offset, offset))
key_map["{}to_v.{}".format(k, end)] = (qkv, (0, offset * 2, offset))
qkv = "{}.context_block.attn.qkv.{}".format(block_to, end)
key_map["{}add_q_proj.{}".format(k, end)] = (qkv, (0, 0, offset))
key_map["{}add_k_proj.{}".format(k, end)] = (qkv, (0, offset, offset))
key_map["{}add_v_proj.{}".format(k, end)] = (qkv, (0, offset * 2, offset))
k = "{}.attn2.".format(block_from)
qkv = "{}.x_block.attn2.qkv.{}".format(block_to, end)
key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, offset))
key_map["{}to_k.{}".format(k, end)] = (qkv, (0, offset, offset))
key_map["{}to_v.{}".format(k, end)] = (qkv, (0, offset * 2, offset))
for k in MMDIT_MAP_BLOCK:
key_map["{}.{}".format(block_from, k[1])] = "{}.{}".format(block_to, k[0])
map_basic = MMDIT_MAP_BASIC.copy()
map_basic.add(("joint_blocks.{}.context_block.adaLN_modulation.1.bias".format(depth - 1), "transformer_blocks.{}.norm1_context.linear.bias".format(depth - 1), swap_scale_shift))
map_basic.add(("joint_blocks.{}.context_block.adaLN_modulation.1.weight".format(depth - 1), "transformer_blocks.{}.norm1_context.linear.weight".format(depth - 1), swap_scale_shift))
for k in map_basic:
if len(k) > 2:
key_map[k[1]] = ("{}{}".format(output_prefix, k[0]), None, k[2])
else:
key_map[k[1]] = "{}{}".format(output_prefix, k[0])
return key_map
def auraflow_to_diffusers(mmdit_config, output_prefix=""):
n_double_layers = mmdit_config.get("n_double_layers", 0)
n_layers = mmdit_config.get("n_layers", 0)
key_map = {}
for i in range(n_layers):
if i < n_double_layers:
index = i
prefix_from = "joint_transformer_blocks"
prefix_to = "{}double_layers".format(output_prefix)
block_map = {
"attn.to_q.weight": "attn.w2q.weight",
"attn.to_k.weight": "attn.w2k.weight",
"attn.to_v.weight": "attn.w2v.weight",
"attn.to_out.0.weight": "attn.w2o.weight",
"attn.add_q_proj.weight": "attn.w1q.weight",
"attn.add_k_proj.weight": "attn.w1k.weight",
"attn.add_v_proj.weight": "attn.w1v.weight",
"attn.to_add_out.weight": "attn.w1o.weight",
"ff.linear_1.weight": "mlpX.c_fc1.weight",
"ff.linear_2.weight": "mlpX.c_fc2.weight",
"ff.out_projection.weight": "mlpX.c_proj.weight",
"ff_context.linear_1.weight": "mlpC.c_fc1.weight",
"ff_context.linear_2.weight": "mlpC.c_fc2.weight",
"ff_context.out_projection.weight": "mlpC.c_proj.weight",
"norm1.linear.weight": "modX.1.weight",
"norm1_context.linear.weight": "modC.1.weight",
}
else:
index = i - n_double_layers
prefix_from = "single_transformer_blocks"
prefix_to = "{}single_layers".format(output_prefix)
block_map = {
"attn.to_q.weight": "attn.w1q.weight",
"attn.to_k.weight": "attn.w1k.weight",
"attn.to_v.weight": "attn.w1v.weight",
"attn.to_out.0.weight": "attn.w1o.weight",
"norm1.linear.weight": "modCX.1.weight",
"ff.linear_1.weight": "mlp.c_fc1.weight",
"ff.linear_2.weight": "mlp.c_fc2.weight",
"ff.out_projection.weight": "mlp.c_proj.weight"
}
for k in block_map:
key_map["{}.{}.{}".format(prefix_from, index, k)] = "{}.{}.{}".format(prefix_to, index, block_map[k])
MAP_BASIC = {
("positional_encoding", "pos_embed.pos_embed"),
("register_tokens", "register_tokens"),
("t_embedder.mlp.0.weight", "time_step_proj.linear_1.weight"),
("t_embedder.mlp.0.bias", "time_step_proj.linear_1.bias"),
("t_embedder.mlp.2.weight", "time_step_proj.linear_2.weight"),
("t_embedder.mlp.2.bias", "time_step_proj.linear_2.bias"),
("cond_seq_linear.weight", "context_embedder.weight"),
("init_x_linear.weight", "pos_embed.proj.weight"),
("init_x_linear.bias", "pos_embed.proj.bias"),
("final_linear.weight", "proj_out.weight"),
("modF.1.weight", "norm_out.linear.weight", swap_scale_shift),
}
for k in MAP_BASIC:
if len(k) > 2:
key_map[k[1]] = ("{}{}".format(output_prefix, k[0]), None, k[2])
else:
key_map[k[1]] = "{}{}".format(output_prefix, k[0])
return key_map
def flux_to_diffusers(mmdit_config, output_prefix=""):
n_double_layers = mmdit_config.get("depth", 0)
n_single_layers = mmdit_config.get("depth_single_blocks", 0)
hidden_size = mmdit_config.get("hidden_size", 0)
key_map = {}
for index in range(n_double_layers):
prefix_from = "transformer_blocks.{}".format(index)
prefix_to = "{}double_blocks.{}".format(output_prefix, index)
for end in ("weight", "bias"):
k = "{}.attn.".format(prefix_from)
qkv = "{}.img_attn.qkv.{}".format(prefix_to, end)
key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, hidden_size))
key_map["{}to_k.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size))
key_map["{}to_v.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size))
k = "{}.attn.".format(prefix_from)
qkv = "{}.txt_attn.qkv.{}".format(prefix_to, end)
key_map["{}add_q_proj.{}".format(k, end)] = (qkv, (0, 0, hidden_size))
key_map["{}add_k_proj.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size))
key_map["{}add_v_proj.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size))
block_map = {
"attn.to_out.0.weight": "img_attn.proj.weight",
"attn.to_out.0.bias": "img_attn.proj.bias",
"norm1.linear.weight": "img_mod.lin.weight",
"norm1.linear.bias": "img_mod.lin.bias",
"norm1_context.linear.weight": "txt_mod.lin.weight",
"norm1_context.linear.bias": "txt_mod.lin.bias",
"attn.to_add_out.weight": "txt_attn.proj.weight",
"attn.to_add_out.bias": "txt_attn.proj.bias",
"ff.net.0.proj.weight": "img_mlp.0.weight",
"ff.net.0.proj.bias": "img_mlp.0.bias",
"ff.net.2.weight": "img_mlp.2.weight",
"ff.net.2.bias": "img_mlp.2.bias",
"ff_context.net.0.proj.weight": "txt_mlp.0.weight",
"ff_context.net.0.proj.bias": "txt_mlp.0.bias",
"ff_context.net.2.weight": "txt_mlp.2.weight",
"ff_context.net.2.bias": "txt_mlp.2.bias",
"attn.norm_q.weight": "img_attn.norm.query_norm.scale",
"attn.norm_k.weight": "img_attn.norm.key_norm.scale",
"attn.norm_added_q.weight": "txt_attn.norm.query_norm.scale",
"attn.norm_added_k.weight": "txt_attn.norm.key_norm.scale",
}
for k in block_map:
key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, block_map[k])
for index in range(n_single_layers):
prefix_from = "single_transformer_blocks.{}".format(index)
prefix_to = "{}single_blocks.{}".format(output_prefix, index)
for end in ("weight", "bias"):
k = "{}.attn.".format(prefix_from)
qkv = "{}.linear1.{}".format(prefix_to, end)
key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, hidden_size))
key_map["{}to_k.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size))
key_map["{}to_v.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size))
key_map["{}.proj_mlp.{}".format(prefix_from, end)] = (qkv, (0, hidden_size * 3, hidden_size * 4))
block_map = {
"norm.linear.weight": "modulation.lin.weight",
"norm.linear.bias": "modulation.lin.bias",
"proj_out.weight": "linear2.weight",
"proj_out.bias": "linear2.bias",
"attn.norm_q.weight": "norm.query_norm.scale",
"attn.norm_k.weight": "norm.key_norm.scale",
}
for k in block_map:
key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, block_map[k])
MAP_BASIC = {
("final_layer.linear.bias", "proj_out.bias"),
("final_layer.linear.weight", "proj_out.weight"),
("img_in.bias", "x_embedder.bias"),
("img_in.weight", "x_embedder.weight"),
("time_in.in_layer.bias", "time_text_embed.timestep_embedder.linear_1.bias"),
("time_in.in_layer.weight", "time_text_embed.timestep_embedder.linear_1.weight"),
("time_in.out_layer.bias", "time_text_embed.timestep_embedder.linear_2.bias"),
("time_in.out_layer.weight", "time_text_embed.timestep_embedder.linear_2.weight"),
("txt_in.bias", "context_embedder.bias"),
("txt_in.weight", "context_embedder.weight"),
("vector_in.in_layer.bias", "time_text_embed.text_embedder.linear_1.bias"),
("vector_in.in_layer.weight", "time_text_embed.text_embedder.linear_1.weight"),
("vector_in.out_layer.bias", "time_text_embed.text_embedder.linear_2.bias"),
("vector_in.out_layer.weight", "time_text_embed.text_embedder.linear_2.weight"),
("guidance_in.in_layer.bias", "time_text_embed.guidance_embedder.linear_1.bias"),
("guidance_in.in_layer.weight", "time_text_embed.guidance_embedder.linear_1.weight"),
("guidance_in.out_layer.bias", "time_text_embed.guidance_embedder.linear_2.bias"),
("guidance_in.out_layer.weight", "time_text_embed.guidance_embedder.linear_2.weight"),
("final_layer.adaLN_modulation.1.bias", "norm_out.linear.bias", swap_scale_shift),
("final_layer.adaLN_modulation.1.weight", "norm_out.linear.weight", swap_scale_shift),
("pos_embed_input.bias", "controlnet_x_embedder.bias"),
("pos_embed_input.weight", "controlnet_x_embedder.weight"),
}
for k in MAP_BASIC:
if len(k) > 2:
key_map[k[1]] = ("{}{}".format(output_prefix, k[0]), None, k[2])
else:
key_map[k[1]] = "{}{}".format(output_prefix, k[0])
return key_map
def repeat_to_batch_size(tensor, batch_size, dim=0):
if tensor.shape[dim] > batch_size:
return tensor.narrow(dim, 0, batch_size)
elif tensor.shape[dim] < batch_size:
return tensor.repeat(dim * [1] + [math.ceil(batch_size / tensor.shape[dim])] + [1] * (len(tensor.shape) - 1 - dim)).narrow(dim, 0, batch_size)
return tensor
def resize_to_batch_size(tensor, batch_size):
in_batch_size = tensor.shape[0]
if in_batch_size == batch_size:
return tensor
if batch_size <= 1:
return tensor[:batch_size]
output = torch.empty([batch_size] + list(tensor.shape)[1:], dtype=tensor.dtype, device=tensor.device)
if batch_size < in_batch_size:
scale = (in_batch_size - 1) / (batch_size - 1)
for i in range(batch_size):
output[i] = tensor[min(round(i * scale), in_batch_size - 1)]
else:
scale = in_batch_size / batch_size
for i in range(batch_size):
output[i] = tensor[min(math.floor((i + 0.5) * scale), in_batch_size - 1)]
return output
def convert_sd_to(state_dict, dtype):
keys = list(state_dict.keys())
for k in keys:
state_dict[k] = state_dict[k].to(dtype)
return state_dict
def safetensors_header(safetensors_path, max_size=100*1024*1024):
with open(safetensors_path, "rb") as f:
header = f.read(8)
length_of_header = struct.unpack('<Q', header)[0]
if length_of_header > max_size:
return None
return f.read(length_of_header)
def set_attr(obj, attr, value):
attrs = attr.split(".")
for name in attrs[:-1]:
obj = getattr(obj, name)
prev = getattr(obj, attrs[-1])
setattr(obj, attrs[-1], value)
return prev
def set_attr_param(obj, attr, value):
return set_attr(obj, attr, torch.nn.Parameter(value, requires_grad=False))
def copy_to_param(obj, attr, value):
# inplace update tensor instead of replacing it
attrs = attr.split(".")
for name in attrs[:-1]:
obj = getattr(obj, name)
prev = getattr(obj, attrs[-1])
prev.data.copy_(value)
def get_attr(obj, attr):
attrs = attr.split(".")
for name in attrs:
obj = getattr(obj, name)
return obj
def bislerp(samples, width, height):
def slerp(b1, b2, r):
'''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC'''
c = b1.shape[-1]
#norms
b1_norms = torch.norm(b1, dim=-1, keepdim=True)
b2_norms = torch.norm(b2, dim=-1, keepdim=True)
#normalize
b1_normalized = b1 / b1_norms
b2_normalized = b2 / b2_norms
#zero when norms are zero
b1_normalized[b1_norms.expand(-1,c) == 0.0] = 0.0
b2_normalized[b2_norms.expand(-1,c) == 0.0] = 0.0
#slerp
dot = (b1_normalized*b2_normalized).sum(1)
omega = torch.acos(dot)
so = torch.sin(omega)
#technically not mathematically correct, but more pleasing?
res = (torch.sin((1.0-r.squeeze(1))*omega)/so).unsqueeze(1)*b1_normalized + (torch.sin(r.squeeze(1)*omega)/so).unsqueeze(1) * b2_normalized
res *= (b1_norms * (1.0-r) + b2_norms * r).expand(-1,c)
#edge cases for same or polar opposites
res[dot > 1 - 1e-5] = b1[dot > 1 - 1e-5]
res[dot < 1e-5 - 1] = (b1 * (1.0-r) + b2 * r)[dot < 1e-5 - 1]
return res
def generate_bilinear_data(length_old, length_new, device):
coords_1 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1))
coords_1 = torch.nn.functional.interpolate(coords_1, size=(1, length_new), mode="bilinear")
ratios = coords_1 - coords_1.floor()
coords_1 = coords_1.to(torch.int64)
coords_2 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) + 1
coords_2[:,:,:,-1] -= 1
coords_2 = torch.nn.functional.interpolate(coords_2, size=(1, length_new), mode="bilinear")
coords_2 = coords_2.to(torch.int64)
return ratios, coords_1, coords_2
orig_dtype = samples.dtype
samples = samples.float()
n,c,h,w = samples.shape
h_new, w_new = (height, width)
#linear w
ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new, samples.device)
coords_1 = coords_1.expand((n, c, h, -1))
coords_2 = coords_2.expand((n, c, h, -1))
ratios = ratios.expand((n, 1, h, -1))
pass_1 = samples.gather(-1,coords_1).movedim(1, -1).reshape((-1,c))
pass_2 = samples.gather(-1,coords_2).movedim(1, -1).reshape((-1,c))
ratios = ratios.movedim(1, -1).reshape((-1,1))
result = slerp(pass_1, pass_2, ratios)
result = result.reshape(n, h, w_new, c).movedim(-1, 1)
#linear h
ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new, samples.device)
coords_1 = coords_1.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
coords_2 = coords_2.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
ratios = ratios.reshape((1,1,-1,1)).expand((n, 1, -1, w_new))
pass_1 = result.gather(-2,coords_1).movedim(1, -1).reshape((-1,c))
pass_2 = result.gather(-2,coords_2).movedim(1, -1).reshape((-1,c))
ratios = ratios.movedim(1, -1).reshape((-1,1))
result = slerp(pass_1, pass_2, ratios)
result = result.reshape(n, h_new, w_new, c).movedim(-1, 1)
return result.to(orig_dtype)
def lanczos(samples, width, height):
images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples]
images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images]
images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images]
result = torch.stack(images)
return result.to(samples.device, samples.dtype)
def common_upscale(samples, width, height, upscale_method, crop):
orig_shape = tuple(samples.shape)
if len(orig_shape) > 4:
samples = samples.reshape(samples.shape[0], samples.shape[1], -1, samples.shape[-2], samples.shape[-1])
samples = samples.movedim(2, 1)
samples = samples.reshape(-1, orig_shape[1], orig_shape[-2], orig_shape[-1])
if crop == "center":
old_width = samples.shape[-1]
old_height = samples.shape[-2]
old_aspect = old_width / old_height
new_aspect = width / height
x = 0
y = 0
if old_aspect > new_aspect:
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
elif old_aspect < new_aspect:
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
s = samples.narrow(-2, y, old_height - y * 2).narrow(-1, x, old_width - x * 2)
else:
s = samples
if upscale_method == "bislerp":
out = bislerp(s, width, height)
elif upscale_method == "lanczos":
out = lanczos(s, width, height)
else:
out = torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
if len(orig_shape) == 4:
return out
out = out.reshape((orig_shape[0], -1, orig_shape[1]) + (height, width))
return out.movedim(2, 1).reshape(orig_shape[:-2] + (height, width))
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
rows = 1 if height <= tile_y else math.ceil((height - overlap) / (tile_y - overlap))
cols = 1 if width <= tile_x else math.ceil((width - overlap) / (tile_x - overlap))
return rows * cols
@torch.inference_mode()
def tiled_scale_multidim(samples, function, tile=(64, 64), overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None):
dims = len(tile)
if not (isinstance(upscale_amount, (tuple, list))):
upscale_amount = [upscale_amount] * dims
if not (isinstance(overlap, (tuple, list))):
overlap = [overlap] * dims
def get_upscale(dim, val):
up = upscale_amount[dim]
if callable(up):
return up(val)
else:
return up * val
def mult_list_upscale(a):
out = []
for i in range(len(a)):
out.append(round(get_upscale(i, a[i])))
return out
output = torch.empty([samples.shape[0], out_channels] + mult_list_upscale(samples.shape[2:]), device=output_device)
for b in range(samples.shape[0]):
s = samples[b:b+1]
# handle entire input fitting in a single tile
if all(s.shape[d+2] <= tile[d] for d in range(dims)):
output[b:b+1] = function(s).to(output_device)
if pbar is not None:
pbar.update(1)
continue
out = torch.zeros([s.shape[0], out_channels] + mult_list_upscale(s.shape[2:]), device=output_device)
out_div = torch.zeros([s.shape[0], out_channels] + mult_list_upscale(s.shape[2:]), device=output_device)
positions = [range(0, s.shape[d+2], tile[d] - overlap[d]) if s.shape[d+2] > tile[d] else [0] for d in range(dims)]
for it in itertools.product(*positions):
s_in = s
upscaled = []
for d in range(dims):
pos = max(0, min(s.shape[d + 2] - (overlap[d] + 1), it[d]))
l = min(tile[d], s.shape[d + 2] - pos)
s_in = s_in.narrow(d + 2, pos, l)
upscaled.append(round(get_upscale(d, pos)))
ps = function(s_in).to(output_device)
mask = torch.ones_like(ps)
for d in range(2, dims + 2):
feather = round(get_upscale(d - 2, overlap[d - 2]))
for t in range(feather):
a = (t + 1) / feather
mask.narrow(d, t, 1).mul_(a)
mask.narrow(d, mask.shape[d] - 1 - t, 1).mul_(a)
o = out
o_d = out_div
for d in range(dims):
o = o.narrow(d + 2, upscaled[d], mask.shape[d + 2])
o_d = o_d.narrow(d + 2, upscaled[d], mask.shape[d + 2])
o.add_(ps * mask)
o_d.add_(mask)
if pbar is not None:
pbar.update(1)
output[b:b+1] = out/out_div
return output
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None):
return tiled_scale_multidim(samples, function, (tile_y, tile_x), overlap, upscale_amount, out_channels, output_device, pbar)
PROGRESS_BAR_ENABLED = True
def set_progress_bar_enabled(enabled):
global PROGRESS_BAR_ENABLED
PROGRESS_BAR_ENABLED = enabled
PROGRESS_BAR_HOOK = None
def set_progress_bar_global_hook(function):
global PROGRESS_BAR_HOOK
PROGRESS_BAR_HOOK = function
class ProgressBar:
def __init__(self, total):
global PROGRESS_BAR_HOOK
self.total = total
self.current = 0
self.hook = PROGRESS_BAR_HOOK
def update_absolute(self, value, total=None, preview=None):
if total is not None:
self.total = total
if value > self.total:
value = self.total
self.current = value
if self.hook is not None:
self.hook(self.current, self.total, preview)
def update(self, value):
self.update_absolute(self.current + value)
def reshape_mask(input_mask, output_shape):
dims = len(output_shape) - 2
if dims == 1:
scale_mode = "linear"
if dims == 2:
input_mask = input_mask.reshape((-1, 1, input_mask.shape[-2], input_mask.shape[-1]))
scale_mode = "bilinear"
if dims == 3:
if len(input_mask.shape) < 5:
input_mask = input_mask.reshape((1, 1, -1, input_mask.shape[-2], input_mask.shape[-1]))
scale_mode = "trilinear"
mask = torch.nn.functional.interpolate(input_mask, size=output_shape[2:], mode=scale_mode)
if mask.shape[1] < output_shape[1]:
mask = mask.repeat((1, output_shape[1]) + (1,) * dims)[:,:output_shape[1]]
mask = comfy.utils.repeat_to_batch_size(mask, output_shape[0])
return mask
|