File size: 37,465 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
"""
    This file is part of ComfyUI.
    Copyright (C) 2024 Comfy

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
"""


import torch
import math
import struct
import comfy.checkpoint_pickle
import safetensors.torch
import numpy as np
from PIL import Image
import logging
import itertools

def load_torch_file(ckpt, safe_load=False, device=None):
    if device is None:
        device = torch.device("cpu")
    if ckpt.lower().endswith(".safetensors") or ckpt.lower().endswith(".sft"):
        sd = safetensors.torch.load_file(ckpt, device=device.type)
    else:
        if safe_load:
            if not 'weights_only' in torch.load.__code__.co_varnames:
                logging.warning("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.")
                safe_load = False
        if safe_load:
            pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
        else:
            pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle)
        if "global_step" in pl_sd:
            logging.debug(f"Global Step: {pl_sd['global_step']}")
        if "state_dict" in pl_sd:
            sd = pl_sd["state_dict"]
        else:
            sd = pl_sd
    return sd

def save_torch_file(sd, ckpt, metadata=None):
    if metadata is not None:
        safetensors.torch.save_file(sd, ckpt, metadata=metadata)
    else:
        safetensors.torch.save_file(sd, ckpt)

def calculate_parameters(sd, prefix=""):
    params = 0
    for k in sd.keys():
        if k.startswith(prefix):
            w = sd[k]
            params += w.nelement()
    return params

def weight_dtype(sd, prefix=""):
    dtypes = {}
    for k in sd.keys():
        if k.startswith(prefix):
            w = sd[k]
            dtypes[w.dtype] = dtypes.get(w.dtype, 0) + w.numel()

    if len(dtypes) == 0:
        return None

    return max(dtypes, key=dtypes.get)

def state_dict_key_replace(state_dict, keys_to_replace):
    for x in keys_to_replace:
        if x in state_dict:
            state_dict[keys_to_replace[x]] = state_dict.pop(x)
    return state_dict

def state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=False):
    if filter_keys:
        out = {}
    else:
        out = state_dict
    for rp in replace_prefix:
        replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys())))
        for x in replace:
            w = state_dict.pop(x[0])
            out[x[1]] = w
    return out


def transformers_convert(sd, prefix_from, prefix_to, number):
    keys_to_replace = {
        "{}positional_embedding": "{}embeddings.position_embedding.weight",
        "{}token_embedding.weight": "{}embeddings.token_embedding.weight",
        "{}ln_final.weight": "{}final_layer_norm.weight",
        "{}ln_final.bias": "{}final_layer_norm.bias",
    }

    for k in keys_to_replace:
        x = k.format(prefix_from)
        if x in sd:
            sd[keys_to_replace[k].format(prefix_to)] = sd.pop(x)

    resblock_to_replace = {
        "ln_1": "layer_norm1",
        "ln_2": "layer_norm2",
        "mlp.c_fc": "mlp.fc1",
        "mlp.c_proj": "mlp.fc2",
        "attn.out_proj": "self_attn.out_proj",
    }

    for resblock in range(number):
        for x in resblock_to_replace:
            for y in ["weight", "bias"]:
                k = "{}transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y)
                k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
                if k in sd:
                    sd[k_to] = sd.pop(k)

        for y in ["weight", "bias"]:
            k_from = "{}transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y)
            if k_from in sd:
                weights = sd.pop(k_from)
                shape_from = weights.shape[0] // 3
                for x in range(3):
                    p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
                    k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y)
                    sd[k_to] = weights[shape_from*x:shape_from*(x + 1)]

    return sd

def clip_text_transformers_convert(sd, prefix_from, prefix_to):
    sd = transformers_convert(sd, prefix_from, "{}text_model.".format(prefix_to), 32)

    tp = "{}text_projection.weight".format(prefix_from)
    if tp in sd:
        sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp)

    tp = "{}text_projection".format(prefix_from)
    if tp in sd:
        sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp).transpose(0, 1).contiguous()
    return sd


UNET_MAP_ATTENTIONS = {
    "proj_in.weight",
    "proj_in.bias",
    "proj_out.weight",
    "proj_out.bias",
    "norm.weight",
    "norm.bias",
}

TRANSFORMER_BLOCKS = {
    "norm1.weight",
    "norm1.bias",
    "norm2.weight",
    "norm2.bias",
    "norm3.weight",
    "norm3.bias",
    "attn1.to_q.weight",
    "attn1.to_k.weight",
    "attn1.to_v.weight",
    "attn1.to_out.0.weight",
    "attn1.to_out.0.bias",
    "attn2.to_q.weight",
    "attn2.to_k.weight",
    "attn2.to_v.weight",
    "attn2.to_out.0.weight",
    "attn2.to_out.0.bias",
    "ff.net.0.proj.weight",
    "ff.net.0.proj.bias",
    "ff.net.2.weight",
    "ff.net.2.bias",
}

UNET_MAP_RESNET = {
    "in_layers.2.weight": "conv1.weight",
    "in_layers.2.bias": "conv1.bias",
    "emb_layers.1.weight": "time_emb_proj.weight",
    "emb_layers.1.bias": "time_emb_proj.bias",
    "out_layers.3.weight": "conv2.weight",
    "out_layers.3.bias": "conv2.bias",
    "skip_connection.weight": "conv_shortcut.weight",
    "skip_connection.bias": "conv_shortcut.bias",
    "in_layers.0.weight": "norm1.weight",
    "in_layers.0.bias": "norm1.bias",
    "out_layers.0.weight": "norm2.weight",
    "out_layers.0.bias": "norm2.bias",
}

UNET_MAP_BASIC = {
    ("label_emb.0.0.weight", "class_embedding.linear_1.weight"),
    ("label_emb.0.0.bias", "class_embedding.linear_1.bias"),
    ("label_emb.0.2.weight", "class_embedding.linear_2.weight"),
    ("label_emb.0.2.bias", "class_embedding.linear_2.bias"),
    ("label_emb.0.0.weight", "add_embedding.linear_1.weight"),
    ("label_emb.0.0.bias", "add_embedding.linear_1.bias"),
    ("label_emb.0.2.weight", "add_embedding.linear_2.weight"),
    ("label_emb.0.2.bias", "add_embedding.linear_2.bias"),
    ("input_blocks.0.0.weight", "conv_in.weight"),
    ("input_blocks.0.0.bias", "conv_in.bias"),
    ("out.0.weight", "conv_norm_out.weight"),
    ("out.0.bias", "conv_norm_out.bias"),
    ("out.2.weight", "conv_out.weight"),
    ("out.2.bias", "conv_out.bias"),
    ("time_embed.0.weight", "time_embedding.linear_1.weight"),
    ("time_embed.0.bias", "time_embedding.linear_1.bias"),
    ("time_embed.2.weight", "time_embedding.linear_2.weight"),
    ("time_embed.2.bias", "time_embedding.linear_2.bias")
}

def unet_to_diffusers(unet_config):
    if "num_res_blocks" not in unet_config:
        return {}
    num_res_blocks = unet_config["num_res_blocks"]
    channel_mult = unet_config["channel_mult"]
    transformer_depth = unet_config["transformer_depth"][:]
    transformer_depth_output = unet_config["transformer_depth_output"][:]
    num_blocks = len(channel_mult)

    transformers_mid = unet_config.get("transformer_depth_middle", None)

    diffusers_unet_map = {}
    for x in range(num_blocks):
        n = 1 + (num_res_blocks[x] + 1) * x
        for i in range(num_res_blocks[x]):
            for b in UNET_MAP_RESNET:
                diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b)
            num_transformers = transformer_depth.pop(0)
            if num_transformers > 0:
                for b in UNET_MAP_ATTENTIONS:
                    diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b)
                for t in range(num_transformers):
                    for b in TRANSFORMER_BLOCKS:
                        diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
            n += 1
        for k in ["weight", "bias"]:
            diffusers_unet_map["down_blocks.{}.downsamplers.0.conv.{}".format(x, k)] = "input_blocks.{}.0.op.{}".format(n, k)

    i = 0
    for b in UNET_MAP_ATTENTIONS:
        diffusers_unet_map["mid_block.attentions.{}.{}".format(i, b)] = "middle_block.1.{}".format(b)
    for t in range(transformers_mid):
        for b in TRANSFORMER_BLOCKS:
            diffusers_unet_map["mid_block.attentions.{}.transformer_blocks.{}.{}".format(i, t, b)] = "middle_block.1.transformer_blocks.{}.{}".format(t, b)

    for i, n in enumerate([0, 2]):
        for b in UNET_MAP_RESNET:
            diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b)

    num_res_blocks = list(reversed(num_res_blocks))
    for x in range(num_blocks):
        n = (num_res_blocks[x] + 1) * x
        l = num_res_blocks[x] + 1
        for i in range(l):
            c = 0
            for b in UNET_MAP_RESNET:
                diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b)
            c += 1
            num_transformers = transformer_depth_output.pop()
            if num_transformers > 0:
                c += 1
                for b in UNET_MAP_ATTENTIONS:
                    diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b)
                for t in range(num_transformers):
                    for b in TRANSFORMER_BLOCKS:
                        diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
            if i == l - 1:
                for k in ["weight", "bias"]:
                    diffusers_unet_map["up_blocks.{}.upsamplers.0.conv.{}".format(x, k)] = "output_blocks.{}.{}.conv.{}".format(n, c, k)
            n += 1

    for k in UNET_MAP_BASIC:
        diffusers_unet_map[k[1]] = k[0]

    return diffusers_unet_map

def swap_scale_shift(weight):
    shift, scale = weight.chunk(2, dim=0)
    new_weight = torch.cat([scale, shift], dim=0)
    return new_weight

MMDIT_MAP_BASIC = {
    ("context_embedder.bias", "context_embedder.bias"),
    ("context_embedder.weight", "context_embedder.weight"),
    ("t_embedder.mlp.0.bias", "time_text_embed.timestep_embedder.linear_1.bias"),
    ("t_embedder.mlp.0.weight", "time_text_embed.timestep_embedder.linear_1.weight"),
    ("t_embedder.mlp.2.bias", "time_text_embed.timestep_embedder.linear_2.bias"),
    ("t_embedder.mlp.2.weight", "time_text_embed.timestep_embedder.linear_2.weight"),
    ("x_embedder.proj.bias", "pos_embed.proj.bias"),
    ("x_embedder.proj.weight", "pos_embed.proj.weight"),
    ("y_embedder.mlp.0.bias", "time_text_embed.text_embedder.linear_1.bias"),
    ("y_embedder.mlp.0.weight", "time_text_embed.text_embedder.linear_1.weight"),
    ("y_embedder.mlp.2.bias", "time_text_embed.text_embedder.linear_2.bias"),
    ("y_embedder.mlp.2.weight", "time_text_embed.text_embedder.linear_2.weight"),
    ("pos_embed", "pos_embed.pos_embed"),
    ("final_layer.adaLN_modulation.1.bias", "norm_out.linear.bias", swap_scale_shift),
    ("final_layer.adaLN_modulation.1.weight", "norm_out.linear.weight", swap_scale_shift),
    ("final_layer.linear.bias", "proj_out.bias"),
    ("final_layer.linear.weight", "proj_out.weight"),
}

MMDIT_MAP_BLOCK = {
    ("context_block.adaLN_modulation.1.bias", "norm1_context.linear.bias"),
    ("context_block.adaLN_modulation.1.weight", "norm1_context.linear.weight"),
    ("context_block.attn.proj.bias", "attn.to_add_out.bias"),
    ("context_block.attn.proj.weight", "attn.to_add_out.weight"),
    ("context_block.mlp.fc1.bias", "ff_context.net.0.proj.bias"),
    ("context_block.mlp.fc1.weight", "ff_context.net.0.proj.weight"),
    ("context_block.mlp.fc2.bias", "ff_context.net.2.bias"),
    ("context_block.mlp.fc2.weight", "ff_context.net.2.weight"),
    ("context_block.attn.ln_q.weight", "attn.norm_added_q.weight"),
    ("context_block.attn.ln_k.weight", "attn.norm_added_k.weight"),
    ("x_block.adaLN_modulation.1.bias", "norm1.linear.bias"),
    ("x_block.adaLN_modulation.1.weight", "norm1.linear.weight"),
    ("x_block.attn.proj.bias", "attn.to_out.0.bias"),
    ("x_block.attn.proj.weight", "attn.to_out.0.weight"),
    ("x_block.attn.ln_q.weight", "attn.norm_q.weight"),
    ("x_block.attn.ln_k.weight", "attn.norm_k.weight"),
    ("x_block.attn2.proj.bias", "attn2.to_out.0.bias"),
    ("x_block.attn2.proj.weight", "attn2.to_out.0.weight"),
    ("x_block.attn2.ln_q.weight", "attn2.norm_q.weight"),
    ("x_block.attn2.ln_k.weight", "attn2.norm_k.weight"),
    ("x_block.mlp.fc1.bias", "ff.net.0.proj.bias"),
    ("x_block.mlp.fc1.weight", "ff.net.0.proj.weight"),
    ("x_block.mlp.fc2.bias", "ff.net.2.bias"),
    ("x_block.mlp.fc2.weight", "ff.net.2.weight"),
}

def mmdit_to_diffusers(mmdit_config, output_prefix=""):
    key_map = {}

    depth = mmdit_config.get("depth", 0)
    num_blocks = mmdit_config.get("num_blocks", depth)
    for i in range(num_blocks):
        block_from = "transformer_blocks.{}".format(i)
        block_to = "{}joint_blocks.{}".format(output_prefix, i)

        offset = depth * 64

        for end in ("weight", "bias"):
            k = "{}.attn.".format(block_from)
            qkv = "{}.x_block.attn.qkv.{}".format(block_to, end)
            key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, offset))
            key_map["{}to_k.{}".format(k, end)] = (qkv, (0, offset, offset))
            key_map["{}to_v.{}".format(k, end)] = (qkv, (0, offset * 2, offset))

            qkv = "{}.context_block.attn.qkv.{}".format(block_to, end)
            key_map["{}add_q_proj.{}".format(k, end)] = (qkv, (0, 0, offset))
            key_map["{}add_k_proj.{}".format(k, end)] = (qkv, (0, offset, offset))
            key_map["{}add_v_proj.{}".format(k, end)] = (qkv, (0, offset * 2, offset))

            k = "{}.attn2.".format(block_from)
            qkv = "{}.x_block.attn2.qkv.{}".format(block_to, end)
            key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, offset))
            key_map["{}to_k.{}".format(k, end)] = (qkv, (0, offset, offset))
            key_map["{}to_v.{}".format(k, end)] = (qkv, (0, offset * 2, offset))

        for k in MMDIT_MAP_BLOCK:
            key_map["{}.{}".format(block_from, k[1])] = "{}.{}".format(block_to, k[0])

    map_basic = MMDIT_MAP_BASIC.copy()
    map_basic.add(("joint_blocks.{}.context_block.adaLN_modulation.1.bias".format(depth - 1), "transformer_blocks.{}.norm1_context.linear.bias".format(depth - 1), swap_scale_shift))
    map_basic.add(("joint_blocks.{}.context_block.adaLN_modulation.1.weight".format(depth - 1), "transformer_blocks.{}.norm1_context.linear.weight".format(depth - 1), swap_scale_shift))

    for k in map_basic:
        if len(k) > 2:
            key_map[k[1]] = ("{}{}".format(output_prefix, k[0]), None, k[2])
        else:
            key_map[k[1]] = "{}{}".format(output_prefix, k[0])

    return key_map


def auraflow_to_diffusers(mmdit_config, output_prefix=""):
    n_double_layers = mmdit_config.get("n_double_layers", 0)
    n_layers = mmdit_config.get("n_layers", 0)

    key_map = {}
    for i in range(n_layers):
        if i < n_double_layers:
            index = i
            prefix_from = "joint_transformer_blocks"
            prefix_to = "{}double_layers".format(output_prefix)
            block_map = {
                            "attn.to_q.weight": "attn.w2q.weight",
                            "attn.to_k.weight": "attn.w2k.weight",
                            "attn.to_v.weight": "attn.w2v.weight",
                            "attn.to_out.0.weight": "attn.w2o.weight",
                            "attn.add_q_proj.weight": "attn.w1q.weight",
                            "attn.add_k_proj.weight": "attn.w1k.weight",
                            "attn.add_v_proj.weight": "attn.w1v.weight",
                            "attn.to_add_out.weight": "attn.w1o.weight",
                            "ff.linear_1.weight": "mlpX.c_fc1.weight",
                            "ff.linear_2.weight": "mlpX.c_fc2.weight",
                            "ff.out_projection.weight": "mlpX.c_proj.weight",
                            "ff_context.linear_1.weight": "mlpC.c_fc1.weight",
                            "ff_context.linear_2.weight": "mlpC.c_fc2.weight",
                            "ff_context.out_projection.weight": "mlpC.c_proj.weight",
                            "norm1.linear.weight": "modX.1.weight",
                            "norm1_context.linear.weight": "modC.1.weight",
                        }
        else:
            index = i - n_double_layers
            prefix_from = "single_transformer_blocks"
            prefix_to = "{}single_layers".format(output_prefix)

            block_map = {
                            "attn.to_q.weight": "attn.w1q.weight",
                            "attn.to_k.weight": "attn.w1k.weight",
                            "attn.to_v.weight": "attn.w1v.weight",
                            "attn.to_out.0.weight": "attn.w1o.weight",
                            "norm1.linear.weight": "modCX.1.weight",
                            "ff.linear_1.weight": "mlp.c_fc1.weight",
                            "ff.linear_2.weight": "mlp.c_fc2.weight",
                            "ff.out_projection.weight": "mlp.c_proj.weight"
                        }

        for k in block_map:
            key_map["{}.{}.{}".format(prefix_from, index, k)] = "{}.{}.{}".format(prefix_to, index, block_map[k])

    MAP_BASIC = {
        ("positional_encoding", "pos_embed.pos_embed"),
        ("register_tokens", "register_tokens"),
        ("t_embedder.mlp.0.weight", "time_step_proj.linear_1.weight"),
        ("t_embedder.mlp.0.bias", "time_step_proj.linear_1.bias"),
        ("t_embedder.mlp.2.weight", "time_step_proj.linear_2.weight"),
        ("t_embedder.mlp.2.bias", "time_step_proj.linear_2.bias"),
        ("cond_seq_linear.weight", "context_embedder.weight"),
        ("init_x_linear.weight", "pos_embed.proj.weight"),
        ("init_x_linear.bias", "pos_embed.proj.bias"),
        ("final_linear.weight", "proj_out.weight"),
        ("modF.1.weight", "norm_out.linear.weight", swap_scale_shift),
    }

    for k in MAP_BASIC:
        if len(k) > 2:
            key_map[k[1]] = ("{}{}".format(output_prefix, k[0]), None, k[2])
        else:
            key_map[k[1]] = "{}{}".format(output_prefix, k[0])

    return key_map

def flux_to_diffusers(mmdit_config, output_prefix=""):
    n_double_layers = mmdit_config.get("depth", 0)
    n_single_layers = mmdit_config.get("depth_single_blocks", 0)
    hidden_size = mmdit_config.get("hidden_size", 0)

    key_map = {}
    for index in range(n_double_layers):
        prefix_from = "transformer_blocks.{}".format(index)
        prefix_to = "{}double_blocks.{}".format(output_prefix, index)

        for end in ("weight", "bias"):
            k = "{}.attn.".format(prefix_from)
            qkv = "{}.img_attn.qkv.{}".format(prefix_to, end)
            key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, hidden_size))
            key_map["{}to_k.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size))
            key_map["{}to_v.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size))

            k = "{}.attn.".format(prefix_from)
            qkv = "{}.txt_attn.qkv.{}".format(prefix_to, end)
            key_map["{}add_q_proj.{}".format(k, end)] = (qkv, (0, 0, hidden_size))
            key_map["{}add_k_proj.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size))
            key_map["{}add_v_proj.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size))

        block_map = {
                        "attn.to_out.0.weight": "img_attn.proj.weight",
                        "attn.to_out.0.bias": "img_attn.proj.bias",
                        "norm1.linear.weight": "img_mod.lin.weight",
                        "norm1.linear.bias": "img_mod.lin.bias",
                        "norm1_context.linear.weight": "txt_mod.lin.weight",
                        "norm1_context.linear.bias": "txt_mod.lin.bias",
                        "attn.to_add_out.weight": "txt_attn.proj.weight",
                        "attn.to_add_out.bias": "txt_attn.proj.bias",
                        "ff.net.0.proj.weight": "img_mlp.0.weight",
                        "ff.net.0.proj.bias": "img_mlp.0.bias",
                        "ff.net.2.weight": "img_mlp.2.weight",
                        "ff.net.2.bias": "img_mlp.2.bias",
                        "ff_context.net.0.proj.weight": "txt_mlp.0.weight",
                        "ff_context.net.0.proj.bias": "txt_mlp.0.bias",
                        "ff_context.net.2.weight": "txt_mlp.2.weight",
                        "ff_context.net.2.bias": "txt_mlp.2.bias",
                        "attn.norm_q.weight": "img_attn.norm.query_norm.scale",
                        "attn.norm_k.weight": "img_attn.norm.key_norm.scale",
                        "attn.norm_added_q.weight": "txt_attn.norm.query_norm.scale",
                        "attn.norm_added_k.weight": "txt_attn.norm.key_norm.scale",
                    }

        for k in block_map:
            key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, block_map[k])

    for index in range(n_single_layers):
        prefix_from = "single_transformer_blocks.{}".format(index)
        prefix_to = "{}single_blocks.{}".format(output_prefix, index)

        for end in ("weight", "bias"):
            k = "{}.attn.".format(prefix_from)
            qkv = "{}.linear1.{}".format(prefix_to, end)
            key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, hidden_size))
            key_map["{}to_k.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size))
            key_map["{}to_v.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size))
            key_map["{}.proj_mlp.{}".format(prefix_from, end)] = (qkv, (0, hidden_size * 3, hidden_size * 4))

        block_map = {
                        "norm.linear.weight": "modulation.lin.weight",
                        "norm.linear.bias": "modulation.lin.bias",
                        "proj_out.weight": "linear2.weight",
                        "proj_out.bias": "linear2.bias",
                        "attn.norm_q.weight": "norm.query_norm.scale",
                        "attn.norm_k.weight": "norm.key_norm.scale",
                    }

        for k in block_map:
            key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, block_map[k])

    MAP_BASIC = {
        ("final_layer.linear.bias", "proj_out.bias"),
        ("final_layer.linear.weight", "proj_out.weight"),
        ("img_in.bias", "x_embedder.bias"),
        ("img_in.weight", "x_embedder.weight"),
        ("time_in.in_layer.bias", "time_text_embed.timestep_embedder.linear_1.bias"),
        ("time_in.in_layer.weight", "time_text_embed.timestep_embedder.linear_1.weight"),
        ("time_in.out_layer.bias", "time_text_embed.timestep_embedder.linear_2.bias"),
        ("time_in.out_layer.weight", "time_text_embed.timestep_embedder.linear_2.weight"),
        ("txt_in.bias", "context_embedder.bias"),
        ("txt_in.weight", "context_embedder.weight"),
        ("vector_in.in_layer.bias", "time_text_embed.text_embedder.linear_1.bias"),
        ("vector_in.in_layer.weight", "time_text_embed.text_embedder.linear_1.weight"),
        ("vector_in.out_layer.bias", "time_text_embed.text_embedder.linear_2.bias"),
        ("vector_in.out_layer.weight", "time_text_embed.text_embedder.linear_2.weight"),
        ("guidance_in.in_layer.bias", "time_text_embed.guidance_embedder.linear_1.bias"),
        ("guidance_in.in_layer.weight", "time_text_embed.guidance_embedder.linear_1.weight"),
        ("guidance_in.out_layer.bias", "time_text_embed.guidance_embedder.linear_2.bias"),
        ("guidance_in.out_layer.weight", "time_text_embed.guidance_embedder.linear_2.weight"),
        ("final_layer.adaLN_modulation.1.bias", "norm_out.linear.bias", swap_scale_shift),
        ("final_layer.adaLN_modulation.1.weight", "norm_out.linear.weight", swap_scale_shift),
        ("pos_embed_input.bias", "controlnet_x_embedder.bias"),
        ("pos_embed_input.weight", "controlnet_x_embedder.weight"),
    }

    for k in MAP_BASIC:
        if len(k) > 2:
            key_map[k[1]] = ("{}{}".format(output_prefix, k[0]), None, k[2])
        else:
            key_map[k[1]] = "{}{}".format(output_prefix, k[0])

    return key_map

def repeat_to_batch_size(tensor, batch_size, dim=0):
    if tensor.shape[dim] > batch_size:
        return tensor.narrow(dim, 0, batch_size)
    elif tensor.shape[dim] < batch_size:
        return tensor.repeat(dim * [1] + [math.ceil(batch_size / tensor.shape[dim])] + [1] * (len(tensor.shape) - 1 - dim)).narrow(dim, 0, batch_size)
    return tensor

def resize_to_batch_size(tensor, batch_size):
    in_batch_size = tensor.shape[0]
    if in_batch_size == batch_size:
        return tensor

    if batch_size <= 1:
        return tensor[:batch_size]

    output = torch.empty([batch_size] + list(tensor.shape)[1:], dtype=tensor.dtype, device=tensor.device)
    if batch_size < in_batch_size:
        scale = (in_batch_size - 1) / (batch_size - 1)
        for i in range(batch_size):
            output[i] = tensor[min(round(i * scale), in_batch_size - 1)]
    else:
        scale = in_batch_size / batch_size
        for i in range(batch_size):
            output[i] = tensor[min(math.floor((i + 0.5) * scale), in_batch_size - 1)]

    return output

def convert_sd_to(state_dict, dtype):
    keys = list(state_dict.keys())
    for k in keys:
        state_dict[k] = state_dict[k].to(dtype)
    return state_dict

def safetensors_header(safetensors_path, max_size=100*1024*1024):
    with open(safetensors_path, "rb") as f:
        header = f.read(8)
        length_of_header = struct.unpack('<Q', header)[0]
        if length_of_header > max_size:
            return None
        return f.read(length_of_header)

def set_attr(obj, attr, value):
    attrs = attr.split(".")
    for name in attrs[:-1]:
        obj = getattr(obj, name)
    prev = getattr(obj, attrs[-1])
    setattr(obj, attrs[-1], value)
    return prev

def set_attr_param(obj, attr, value):
    return set_attr(obj, attr, torch.nn.Parameter(value, requires_grad=False))

def copy_to_param(obj, attr, value):
    # inplace update tensor instead of replacing it
    attrs = attr.split(".")
    for name in attrs[:-1]:
        obj = getattr(obj, name)
    prev = getattr(obj, attrs[-1])
    prev.data.copy_(value)

def get_attr(obj, attr):
    attrs = attr.split(".")
    for name in attrs:
        obj = getattr(obj, name)
    return obj

def bislerp(samples, width, height):
    def slerp(b1, b2, r):
        '''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC'''
        
        c = b1.shape[-1]

        #norms
        b1_norms = torch.norm(b1, dim=-1, keepdim=True)
        b2_norms = torch.norm(b2, dim=-1, keepdim=True)

        #normalize
        b1_normalized = b1 / b1_norms
        b2_normalized = b2 / b2_norms

        #zero when norms are zero
        b1_normalized[b1_norms.expand(-1,c) == 0.0] = 0.0
        b2_normalized[b2_norms.expand(-1,c) == 0.0] = 0.0

        #slerp
        dot = (b1_normalized*b2_normalized).sum(1)
        omega = torch.acos(dot)
        so = torch.sin(omega)

        #technically not mathematically correct, but more pleasing?
        res = (torch.sin((1.0-r.squeeze(1))*omega)/so).unsqueeze(1)*b1_normalized + (torch.sin(r.squeeze(1)*omega)/so).unsqueeze(1) * b2_normalized
        res *= (b1_norms * (1.0-r) + b2_norms * r).expand(-1,c)

        #edge cases for same or polar opposites
        res[dot > 1 - 1e-5] = b1[dot > 1 - 1e-5] 
        res[dot < 1e-5 - 1] = (b1 * (1.0-r) + b2 * r)[dot < 1e-5 - 1]
        return res
    
    def generate_bilinear_data(length_old, length_new, device):
        coords_1 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1))
        coords_1 = torch.nn.functional.interpolate(coords_1, size=(1, length_new), mode="bilinear")
        ratios = coords_1 - coords_1.floor()
        coords_1 = coords_1.to(torch.int64)
        
        coords_2 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) + 1
        coords_2[:,:,:,-1] -= 1
        coords_2 = torch.nn.functional.interpolate(coords_2, size=(1, length_new), mode="bilinear")
        coords_2 = coords_2.to(torch.int64)
        return ratios, coords_1, coords_2

    orig_dtype = samples.dtype
    samples = samples.float()
    n,c,h,w = samples.shape
    h_new, w_new = (height, width)
    
    #linear w
    ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new, samples.device)
    coords_1 = coords_1.expand((n, c, h, -1))
    coords_2 = coords_2.expand((n, c, h, -1))
    ratios = ratios.expand((n, 1, h, -1))

    pass_1 = samples.gather(-1,coords_1).movedim(1, -1).reshape((-1,c))
    pass_2 = samples.gather(-1,coords_2).movedim(1, -1).reshape((-1,c))
    ratios = ratios.movedim(1, -1).reshape((-1,1))

    result = slerp(pass_1, pass_2, ratios)
    result = result.reshape(n, h, w_new, c).movedim(-1, 1)

    #linear h
    ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new, samples.device)
    coords_1 = coords_1.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
    coords_2 = coords_2.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
    ratios = ratios.reshape((1,1,-1,1)).expand((n, 1, -1, w_new))

    pass_1 = result.gather(-2,coords_1).movedim(1, -1).reshape((-1,c))
    pass_2 = result.gather(-2,coords_2).movedim(1, -1).reshape((-1,c))
    ratios = ratios.movedim(1, -1).reshape((-1,1))

    result = slerp(pass_1, pass_2, ratios)
    result = result.reshape(n, h_new, w_new, c).movedim(-1, 1)
    return result.to(orig_dtype)

def lanczos(samples, width, height):
    images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples]
    images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images]
    images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images]
    result = torch.stack(images)
    return result.to(samples.device, samples.dtype)

def common_upscale(samples, width, height, upscale_method, crop):
        orig_shape = tuple(samples.shape)
        if len(orig_shape) > 4:
            samples = samples.reshape(samples.shape[0], samples.shape[1], -1, samples.shape[-2], samples.shape[-1])
            samples = samples.movedim(2, 1)
            samples = samples.reshape(-1, orig_shape[1], orig_shape[-2], orig_shape[-1])
        if crop == "center":
            old_width = samples.shape[-1]
            old_height = samples.shape[-2]
            old_aspect = old_width / old_height
            new_aspect = width / height
            x = 0
            y = 0
            if old_aspect > new_aspect:
                x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
            elif old_aspect < new_aspect:
                y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
            s = samples.narrow(-2, y, old_height - y * 2).narrow(-1, x, old_width - x * 2)
        else:
            s = samples

        if upscale_method == "bislerp":
            out = bislerp(s, width, height)
        elif upscale_method == "lanczos":
            out = lanczos(s, width, height)
        else:
            out = torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)

        if len(orig_shape) == 4:
            return out

        out = out.reshape((orig_shape[0], -1, orig_shape[1]) + (height, width))
        return out.movedim(2, 1).reshape(orig_shape[:-2] + (height, width))

def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
    rows = 1 if height <= tile_y else math.ceil((height - overlap) / (tile_y - overlap))
    cols = 1 if width <= tile_x else math.ceil((width - overlap) / (tile_x - overlap))
    return rows * cols

@torch.inference_mode()
def tiled_scale_multidim(samples, function, tile=(64, 64), overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None):
    dims = len(tile)

    if not (isinstance(upscale_amount, (tuple, list))):
        upscale_amount = [upscale_amount] * dims

    if not (isinstance(overlap, (tuple, list))):
        overlap = [overlap] * dims

    def get_upscale(dim, val):
        up = upscale_amount[dim]
        if callable(up):
            return up(val)
        else:
            return up * val

    def mult_list_upscale(a):
        out = []
        for i in range(len(a)):
            out.append(round(get_upscale(i, a[i])))
        return out

    output = torch.empty([samples.shape[0], out_channels] + mult_list_upscale(samples.shape[2:]), device=output_device)

    for b in range(samples.shape[0]):
        s = samples[b:b+1]

        # handle entire input fitting in a single tile
        if all(s.shape[d+2] <= tile[d] for d in range(dims)):
            output[b:b+1] = function(s).to(output_device)
            if pbar is not None:
                pbar.update(1)
            continue

        out = torch.zeros([s.shape[0], out_channels] + mult_list_upscale(s.shape[2:]), device=output_device)
        out_div = torch.zeros([s.shape[0], out_channels] + mult_list_upscale(s.shape[2:]), device=output_device)

        positions = [range(0, s.shape[d+2], tile[d] - overlap[d]) if s.shape[d+2] > tile[d] else [0] for d in range(dims)]

        for it in itertools.product(*positions):
            s_in = s
            upscaled = []

            for d in range(dims):
                pos = max(0, min(s.shape[d + 2] - (overlap[d] + 1), it[d]))
                l = min(tile[d], s.shape[d + 2] - pos)
                s_in = s_in.narrow(d + 2, pos, l)
                upscaled.append(round(get_upscale(d, pos)))

            ps = function(s_in).to(output_device)
            mask = torch.ones_like(ps)

            for d in range(2, dims + 2):
                feather = round(get_upscale(d - 2, overlap[d - 2]))
                for t in range(feather):
                    a = (t + 1) / feather
                    mask.narrow(d, t, 1).mul_(a)
                    mask.narrow(d, mask.shape[d] - 1 - t, 1).mul_(a)

            o = out
            o_d = out_div
            for d in range(dims):
                o = o.narrow(d + 2, upscaled[d], mask.shape[d + 2])
                o_d = o_d.narrow(d + 2, upscaled[d], mask.shape[d + 2])

            o.add_(ps * mask)
            o_d.add_(mask)

            if pbar is not None:
                pbar.update(1)

        output[b:b+1] = out/out_div
    return output

def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None):
    return tiled_scale_multidim(samples, function, (tile_y, tile_x), overlap, upscale_amount, out_channels, output_device, pbar)

PROGRESS_BAR_ENABLED = True
def set_progress_bar_enabled(enabled):
    global PROGRESS_BAR_ENABLED
    PROGRESS_BAR_ENABLED = enabled

PROGRESS_BAR_HOOK = None
def set_progress_bar_global_hook(function):
    global PROGRESS_BAR_HOOK
    PROGRESS_BAR_HOOK = function

class ProgressBar:
    def __init__(self, total):
        global PROGRESS_BAR_HOOK
        self.total = total
        self.current = 0
        self.hook = PROGRESS_BAR_HOOK

    def update_absolute(self, value, total=None, preview=None):
        if total is not None:
            self.total = total
        if value > self.total:
            value = self.total
        self.current = value
        if self.hook is not None:
            self.hook(self.current, self.total, preview)

    def update(self, value):
        self.update_absolute(self.current + value)

def reshape_mask(input_mask, output_shape):
    dims = len(output_shape) - 2

    if dims == 1:
        scale_mode = "linear"

    if dims == 2:
        input_mask = input_mask.reshape((-1, 1, input_mask.shape[-2], input_mask.shape[-1]))
        scale_mode = "bilinear"

    if dims == 3:
        if len(input_mask.shape) < 5:
            input_mask = input_mask.reshape((1, 1, -1, input_mask.shape[-2], input_mask.shape[-1]))
        scale_mode = "trilinear"

    mask = torch.nn.functional.interpolate(input_mask, size=output_shape[2:], mode=scale_mode)
    if mask.shape[1] < output_shape[1]:
        mask = mask.repeat((1, output_shape[1]) + (1,) * dims)[:,:output_shape[1]]
    mask = comfy.utils.repeat_to_batch_size(mask, output_shape[0])
    return mask