Spaces:
Running
on
L40S
Running
on
L40S
File size: 5,594 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
def attention_multiply(attn, model, q, k, v, out):
m = model.clone()
sd = model.model_state_dict()
for key in sd:
if key.endswith("{}.to_q.bias".format(attn)) or key.endswith("{}.to_q.weight".format(attn)):
m.add_patches({key: (None,)}, 0.0, q)
if key.endswith("{}.to_k.bias".format(attn)) or key.endswith("{}.to_k.weight".format(attn)):
m.add_patches({key: (None,)}, 0.0, k)
if key.endswith("{}.to_v.bias".format(attn)) or key.endswith("{}.to_v.weight".format(attn)):
m.add_patches({key: (None,)}, 0.0, v)
if key.endswith("{}.to_out.0.bias".format(attn)) or key.endswith("{}.to_out.0.weight".format(attn)):
m.add_patches({key: (None,)}, 0.0, out)
return m
class UNetSelfAttentionMultiply:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "_for_testing/attention_experiments"
def patch(self, model, q, k, v, out):
m = attention_multiply("attn1", model, q, k, v, out)
return (m, )
class UNetCrossAttentionMultiply:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "_for_testing/attention_experiments"
def patch(self, model, q, k, v, out):
m = attention_multiply("attn2", model, q, k, v, out)
return (m, )
class CLIPAttentionMultiply:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip": ("CLIP",),
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "patch"
CATEGORY = "_for_testing/attention_experiments"
def patch(self, clip, q, k, v, out):
m = clip.clone()
sd = m.patcher.model_state_dict()
for key in sd:
if key.endswith("self_attn.q_proj.weight") or key.endswith("self_attn.q_proj.bias"):
m.add_patches({key: (None,)}, 0.0, q)
if key.endswith("self_attn.k_proj.weight") or key.endswith("self_attn.k_proj.bias"):
m.add_patches({key: (None,)}, 0.0, k)
if key.endswith("self_attn.v_proj.weight") or key.endswith("self_attn.v_proj.bias"):
m.add_patches({key: (None,)}, 0.0, v)
if key.endswith("self_attn.out_proj.weight") or key.endswith("self_attn.out_proj.bias"):
m.add_patches({key: (None,)}, 0.0, out)
return (m, )
class UNetTemporalAttentionMultiply:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"self_structural": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"self_temporal": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"cross_structural": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"cross_temporal": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "_for_testing/attention_experiments"
def patch(self, model, self_structural, self_temporal, cross_structural, cross_temporal):
m = model.clone()
sd = model.model_state_dict()
for k in sd:
if (k.endswith("attn1.to_out.0.bias") or k.endswith("attn1.to_out.0.weight")):
if '.time_stack.' in k:
m.add_patches({k: (None,)}, 0.0, self_temporal)
else:
m.add_patches({k: (None,)}, 0.0, self_structural)
elif (k.endswith("attn2.to_out.0.bias") or k.endswith("attn2.to_out.0.weight")):
if '.time_stack.' in k:
m.add_patches({k: (None,)}, 0.0, cross_temporal)
else:
m.add_patches({k: (None,)}, 0.0, cross_structural)
return (m, )
NODE_CLASS_MAPPINGS = {
"UNetSelfAttentionMultiply": UNetSelfAttentionMultiply,
"UNetCrossAttentionMultiply": UNetCrossAttentionMultiply,
"CLIPAttentionMultiply": CLIPAttentionMultiply,
"UNetTemporalAttentionMultiply": UNetTemporalAttentionMultiply,
}
|