Spaces:
Running
on
L40S
Running
on
L40S
File size: 10,890 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import csv
import shutil
from pathlib import Path
import folder_paths
import torch
from ..log import log
from ..utils import here
Conditioning = list[tuple[torch.Tensor, dict[str, torch.Tensor]]]
def check_condition(conditioning: Conditioning):
has_cn = False
if len(conditioning) > 1:
log.warn(
"More than one conditioning was provided. Only the first one will be used."
)
first = conditioning[0]
cond, kwargs = first
log.debug("Conditioning Shape")
log.debug(cond.shape)
log.debug("Conditioning keys")
log.debug([f"\t{k} - {type(kwargs[k])}" for k in kwargs])
if "control" in kwargs:
log.debug("Conditioning contains a controlnet")
has_cn = True
if "pooled_output" not in kwargs:
raise ValueError(
"Conditioning is not valid. Missing 'pooled_output' key."
)
return has_cn
class MTB_InterpolateCondition:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"blend": (
"FLOAT",
{"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01},
),
},
}
RETURN_TYPES = ("CONDITIONING",)
CATEGORY = "mtb/conditioning"
FUNCTION = "execute"
def execute(
self, blend: float, **kwargs: Conditioning
) -> tuple[Conditioning]:
blend = max(0.0, min(1.0, blend))
conditions: list[Conditioning] = list(kwargs.values())
num_conditions = len(conditions)
if num_conditions < 2:
raise ValueError("At least two conditioning inputs are required.")
segment_length = 1.0 / (num_conditions - 1)
segment_index = min(int(blend // segment_length), num_conditions - 2)
local_blend = (
blend - (segment_index * segment_length)
) / segment_length
cond_from = conditions[segment_index]
cond_to = conditions[segment_index + 1]
from_cn = check_condition(cond_from)
to_cn = check_condition(cond_to)
if from_cn and to_cn:
raise ValueError(
"Interpolating conditions cannot both contain ControlNets"
)
try:
interpolated_condition = [
(1.0 - local_blend) * c_from + local_blend * c_to
for c_from, c_to in zip(
cond_from[0][0], cond_to[0][0], strict=False
)
]
except Exception as e:
print(f"Error during interpolation: {e}")
raise
pooled_from = cond_from[0][1].get(
"pooled_output",
torch.zeros_like(
next(iter(cond_from[0][1].values()), torch.tensor([]))
),
)
pooled_to = cond_to[0][1].get(
"pooled_output",
torch.zeros_like(
next(iter(cond_from[0][1].values()), torch.tensor([]))
),
)
interpolated_pooled = (
1.0 - local_blend
) * pooled_from + local_blend * pooled_to
res = {"pooled_output": interpolated_pooled}
if from_cn:
res["control"] = cond_from[0][1]["control"]
res["control_apply_to_uncond"] = cond_from[0][1][
"control_apply_to_uncond"
]
if to_cn:
res["control"] = cond_to[0][1]["control"]
res["control_apply_to_uncond"] = cond_to[0][1][
"control_apply_to_uncond"
]
return ([(torch.stack(interpolated_condition), res)],)
class MTB_InterpolateClipSequential:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"base_text": ("STRING", {"multiline": True}),
"text_to_replace": ("STRING", {"default": ""}),
"clip": ("CLIP",),
"interpolation_strength": (
"FLOAT",
{"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01},
),
}
}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "interpolate_encodings_sequential"
CATEGORY = "mtb/conditioning"
def interpolate_encodings_sequential(
self,
base_text,
text_to_replace,
clip,
interpolation_strength,
**replacements,
):
log.debug(f"Received interpolation_strength: {interpolation_strength}")
# - Ensure interpolation strength is within [0, 1]
interpolation_strength = max(0.0, min(1.0, interpolation_strength))
# - Check if replacements were provided
if not replacements:
raise ValueError("At least one replacement should be provided.")
num_replacements = len(replacements)
log.debug(f"Number of replacements: {num_replacements}")
segment_length = 1.0 / num_replacements
log.debug(f"Calculated segment_length: {segment_length}")
# - Find the segment that the interpolation_strength falls into
segment_index = min(
int(interpolation_strength // segment_length), num_replacements - 1
)
log.debug(f"Segment index: {segment_index}")
# - Calculate the local strength within the segment
local_strength = (
interpolation_strength - (segment_index * segment_length)
) / segment_length
log.debug(f"Local strength: {local_strength}")
# - If it's the first segment, interpolate between base_text and the first replacement
if segment_index == 0:
replacement_text = list(replacements.values())[0]
log.debug("Using the base text a the base blend")
# - Start with the base_text condition
tokens = clip.tokenize(base_text)
cond_from, pooled_from = clip.encode_from_tokens(
tokens, return_pooled=True
)
else:
base_replace = list(replacements.values())[segment_index - 1]
log.debug(f"Using {base_replace} a the base blend")
# - Start with the base_text condition replaced by the closest replacement
tokens = clip.tokenize(
base_text.replace(text_to_replace, base_replace)
)
cond_from, pooled_from = clip.encode_from_tokens(
tokens, return_pooled=True
)
replacement_text = list(replacements.values())[segment_index]
interpolated_text = base_text.replace(
text_to_replace, replacement_text
)
tokens = clip.tokenize(interpolated_text)
cond_to, pooled_to = clip.encode_from_tokens(
tokens, return_pooled=True
)
# - Linearly interpolate between the two conditions
interpolated_condition = (
1.0 - local_strength
) * cond_from + local_strength * cond_to
interpolated_pooled = (
1.0 - local_strength
) * pooled_from + local_strength * pooled_to
return (
[[interpolated_condition, {"pooled_output": interpolated_pooled}]],
)
class MTB_SmartStep:
"""Utils to control the steps start/stop of the KAdvancedSampler in percentage"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"step": (
"INT",
{"default": 20, "min": 1, "max": 10000, "step": 1},
),
"start_percent": (
"INT",
{"default": 0, "min": 0, "max": 100, "step": 1},
),
"end_percent": (
"INT",
{"default": 0, "min": 0, "max": 100, "step": 1},
),
}
}
RETURN_TYPES = ("INT", "INT", "INT")
RETURN_NAMES = ("step", "start", "end")
FUNCTION = "do_step"
CATEGORY = "mtb/conditioning"
def do_step(self, step, start_percent, end_percent):
start = int(step * start_percent / 100)
end = int(step * end_percent / 100)
return (step, start, end)
def install_default_styles(force=False):
styles_dir = Path(folder_paths.base_path) / "styles"
styles_dir.mkdir(parents=True, exist_ok=True)
default_style = here / "styles.csv"
dest_style = styles_dir / "default.csv"
if force or not dest_style.exists():
log.debug(f"Copying default style to {dest_style}")
shutil.copy2(default_style.as_posix(), dest_style.as_posix())
return dest_style
class MTB_StylesLoader:
"""Load csv files and populate a dropdown from the rows (à la A111)"""
options = {}
@classmethod
def INPUT_TYPES(cls):
if not cls.options:
input_dir = Path(folder_paths.base_path) / "styles"
if not input_dir.exists():
install_default_styles()
if not (
files := [f for f in input_dir.iterdir() if f.suffix == ".csv"]
):
log.warn(
"No styles found in the styles folder, place at least one csv file in the styles folder at the root of ComfyUI (for instance ComfyUI/styles/mystyle.csv)"
)
for file in files:
with open(file, encoding="utf8") as f:
parsed = csv.reader(f)
for i, row in enumerate(parsed):
# log.debug(f"Adding style {row[0]}")
try:
name, positive, negative = (row + [None] * 3)[:3]
positive = positive or ""
negative = negative or ""
if name is not None:
cls.options[name] = (positive, negative)
else:
# Handle the case where 'name' is None
log.warning(f"Missing 'name' in row {i}.")
except Exception as e:
log.warning(
f"There was an error while parsing {file}, make sure it respects A1111 format, i.e 3 columns name, positive, negative:\n{e}"
)
continue
else:
log.debug(f"Using cached styles (count: {len(cls.options)})")
return {
"required": {
"style_name": (list(cls.options.keys()),),
}
}
CATEGORY = "mtb/conditioning"
RETURN_TYPES = ("STRING", "STRING")
RETURN_NAMES = ("positive", "negative")
FUNCTION = "load_style"
def load_style(self, style_name):
return (self.options[style_name][0], self.options[style_name][1])
__nodes__ = [
MTB_SmartStep,
MTB_StylesLoader,
MTB_InterpolateClipSequential,
MTB_InterpolateCondition,
]
|