Spaces:
Running
on
L40S
Running
on
L40S
File size: 9,870 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import torch
import torch.nn as nn
from typing import Tuple, Union, Optional
from comfy.ldm.modules.attention import optimized_attention
def reshape_for_broadcast(freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], x: torch.Tensor, head_first=False):
"""
Reshape frequency tensor for broadcasting it with another tensor.
This function reshapes the frequency tensor to have the same shape as the target tensor 'x'
for the purpose of broadcasting the frequency tensor during element-wise operations.
Args:
freqs_cis (Union[torch.Tensor, Tuple[torch.Tensor]]): Frequency tensor to be reshaped.
x (torch.Tensor): Target tensor for broadcasting compatibility.
head_first (bool): head dimension first (except batch dim) or not.
Returns:
torch.Tensor: Reshaped frequency tensor.
Raises:
AssertionError: If the frequency tensor doesn't match the expected shape.
AssertionError: If the target tensor 'x' doesn't have the expected number of dimensions.
"""
ndim = x.ndim
assert 0 <= 1 < ndim
if isinstance(freqs_cis, tuple):
# freqs_cis: (cos, sin) in real space
if head_first:
assert freqs_cis[0].shape == (x.shape[-2], x.shape[-1]), f'freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}'
shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
else:
assert freqs_cis[0].shape == (x.shape[1], x.shape[-1]), f'freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}'
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape)
else:
# freqs_cis: values in complex space
if head_first:
assert freqs_cis.shape == (x.shape[-2], x.shape[-1]), f'freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}'
shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
else:
assert freqs_cis.shape == (x.shape[1], x.shape[-1]), f'freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}'
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def rotate_half(x):
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
return torch.stack([-x_imag, x_real], dim=-1).flatten(3)
def apply_rotary_emb(
xq: torch.Tensor,
xk: Optional[torch.Tensor],
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
head_first: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor.
This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided
frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor
is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are
returned as real tensors.
Args:
xq (torch.Tensor): Query tensor to apply rotary embeddings. [B, S, H, D]
xk (torch.Tensor): Key tensor to apply rotary embeddings. [B, S, H, D]
freqs_cis (Union[torch.Tensor, Tuple[torch.Tensor]]): Precomputed frequency tensor for complex exponentials.
head_first (bool): head dimension first (except batch dim) or not.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
xk_out = None
if isinstance(freqs_cis, tuple):
cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first) # [S, D]
xq_out = (xq * cos + rotate_half(xq) * sin)
if xk is not None:
xk_out = (xk * cos + rotate_half(xk) * sin)
else:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) # [B, S, H, D//2]
freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to(xq.device) # [S, D//2] --> [1, S, 1, D//2]
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq)
if xk is not None:
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) # [B, S, H, D//2]
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk)
return xq_out, xk_out
class CrossAttention(nn.Module):
"""
Use QK Normalization.
"""
def __init__(self,
qdim,
kdim,
num_heads,
qkv_bias=True,
qk_norm=False,
attn_drop=0.0,
proj_drop=0.0,
attn_precision=None,
device=None,
dtype=None,
operations=None,
):
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.attn_precision = attn_precision
self.qdim = qdim
self.kdim = kdim
self.num_heads = num_heads
assert self.qdim % num_heads == 0, "self.qdim must be divisible by num_heads"
self.head_dim = self.qdim // num_heads
assert self.head_dim % 8 == 0 and self.head_dim <= 128, "Only support head_dim <= 128 and divisible by 8"
self.scale = self.head_dim ** -0.5
self.q_proj = operations.Linear(qdim, qdim, bias=qkv_bias, **factory_kwargs)
self.kv_proj = operations.Linear(kdim, 2 * qdim, bias=qkv_bias, **factory_kwargs)
# TODO: eps should be 1 / 65530 if using fp16
self.q_norm = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) if qk_norm else nn.Identity()
self.k_norm = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) if qk_norm else nn.Identity()
self.attn_drop = nn.Dropout(attn_drop)
self.out_proj = operations.Linear(qdim, qdim, bias=qkv_bias, **factory_kwargs)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, y, freqs_cis_img=None):
"""
Parameters
----------
x: torch.Tensor
(batch, seqlen1, hidden_dim) (where hidden_dim = num heads * head dim)
y: torch.Tensor
(batch, seqlen2, hidden_dim2)
freqs_cis_img: torch.Tensor
(batch, hidden_dim // 2), RoPE for image
"""
b, s1, c = x.shape # [b, s1, D]
_, s2, c = y.shape # [b, s2, 1024]
q = self.q_proj(x).view(b, s1, self.num_heads, self.head_dim) # [b, s1, h, d]
kv = self.kv_proj(y).view(b, s2, 2, self.num_heads, self.head_dim) # [b, s2, 2, h, d]
k, v = kv.unbind(dim=2) # [b, s, h, d]
q = self.q_norm(q)
k = self.k_norm(k)
# Apply RoPE if needed
if freqs_cis_img is not None:
qq, _ = apply_rotary_emb(q, None, freqs_cis_img)
assert qq.shape == q.shape, f'qq: {qq.shape}, q: {q.shape}'
q = qq
q = q.transpose(-2, -3).contiguous() # q -> B, L1, H, C - B, H, L1, C
k = k.transpose(-2, -3).contiguous() # k -> B, L2, H, C - B, H, C, L2
v = v.transpose(-2, -3).contiguous()
context = optimized_attention(q, k, v, self.num_heads, skip_reshape=True, attn_precision=self.attn_precision)
out = self.out_proj(context) # context.reshape - B, L1, -1
out = self.proj_drop(out)
out_tuple = (out,)
return out_tuple
class Attention(nn.Module):
"""
We rename some layer names to align with flash attention
"""
def __init__(self, dim, num_heads, qkv_bias=True, qk_norm=False, attn_drop=0., proj_drop=0., attn_precision=None, dtype=None, device=None, operations=None):
super().__init__()
self.attn_precision = attn_precision
self.dim = dim
self.num_heads = num_heads
assert self.dim % num_heads == 0, 'dim should be divisible by num_heads'
self.head_dim = self.dim // num_heads
# This assertion is aligned with flash attention
assert self.head_dim % 8 == 0 and self.head_dim <= 128, "Only support head_dim <= 128 and divisible by 8"
self.scale = self.head_dim ** -0.5
# qkv --> Wqkv
self.Wqkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
# TODO: eps should be 1 / 65530 if using fp16
self.q_norm = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) if qk_norm else nn.Identity()
self.k_norm = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) if qk_norm else nn.Identity()
self.attn_drop = nn.Dropout(attn_drop)
self.out_proj = operations.Linear(dim, dim, dtype=dtype, device=device)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, freqs_cis_img=None):
B, N, C = x.shape
qkv = self.Wqkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) # [3, b, h, s, d]
q, k, v = qkv.unbind(0) # [b, h, s, d]
q = self.q_norm(q) # [b, h, s, d]
k = self.k_norm(k) # [b, h, s, d]
# Apply RoPE if needed
if freqs_cis_img is not None:
qq, kk = apply_rotary_emb(q, k, freqs_cis_img, head_first=True)
assert qq.shape == q.shape and kk.shape == k.shape, \
f'qq: {qq.shape}, q: {q.shape}, kk: {kk.shape}, k: {k.shape}'
q, k = qq, kk
x = optimized_attention(q, k, v, self.num_heads, skip_reshape=True, attn_precision=self.attn_precision)
x = self.out_proj(x)
x = self.proj_drop(x)
out_tuple = (x,)
return out_tuple
|