Spaces:
Running
on
L40S
Running
on
L40S
File size: 3,924 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import comfy.samplers
import comfy.utils
import torch
import numpy as np
from tqdm.auto import trange, tqdm
import math
@torch.no_grad()
def sample_lcm_upscale(model, x, sigmas, extra_args=None, callback=None, disable=None, total_upscale=2.0, upscale_method="bislerp", upscale_steps=None):
extra_args = {} if extra_args is None else extra_args
if upscale_steps is None:
upscale_steps = max(len(sigmas) // 2 + 1, 2)
else:
upscale_steps += 1
upscale_steps = min(upscale_steps, len(sigmas) + 1)
upscales = np.linspace(1.0, total_upscale, upscale_steps)[1:]
orig_shape = x.size()
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
x = denoised
if i < len(upscales):
x = comfy.utils.common_upscale(x, round(orig_shape[-1] * upscales[i]), round(orig_shape[-2] * upscales[i]), upscale_method, "disabled")
if sigmas[i + 1] > 0:
x += sigmas[i + 1] * torch.randn_like(x)
return x
class SamplerLCMUpscale:
upscale_methods = ["bislerp", "nearest-exact", "bilinear", "area", "bicubic"]
@classmethod
def INPUT_TYPES(s):
return {"required":
{"scale_ratio": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 20.0, "step": 0.01}),
"scale_steps": ("INT", {"default": -1, "min": -1, "max": 1000, "step": 1}),
"upscale_method": (s.upscale_methods,),
}
}
RETURN_TYPES = ("SAMPLER",)
CATEGORY = "sampling/custom_sampling/samplers"
FUNCTION = "get_sampler"
def get_sampler(self, scale_ratio, scale_steps, upscale_method):
if scale_steps < 0:
scale_steps = None
sampler = comfy.samplers.KSAMPLER(sample_lcm_upscale, extra_options={"total_upscale": scale_ratio, "upscale_steps": scale_steps, "upscale_method": upscale_method})
return (sampler, )
from comfy.k_diffusion.sampling import to_d
import comfy.model_patcher
@torch.no_grad()
def sample_euler_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
extra_args = {} if extra_args is None else extra_args
temp = [0]
def post_cfg_function(args):
temp[0] = args["uncond_denoised"]
return args["denoised"]
model_options = extra_args.get("model_options", {}).copy()
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
sigma_hat = sigmas[i]
denoised = model(x, sigma_hat * s_in, **extra_args)
d = to_d(x - denoised + temp[0], sigmas[i], denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
dt = sigmas[i + 1] - sigma_hat
x = x + d * dt
return x
class SamplerEulerCFGpp:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"version": (["regular", "alternative"],),}
}
RETURN_TYPES = ("SAMPLER",)
# CATEGORY = "sampling/custom_sampling/samplers"
CATEGORY = "_for_testing"
FUNCTION = "get_sampler"
def get_sampler(self, version):
if version == "alternative":
sampler = comfy.samplers.KSAMPLER(sample_euler_pp)
else:
sampler = comfy.samplers.ksampler("euler_cfg_pp")
return (sampler, )
NODE_CLASS_MAPPINGS = {
"SamplerLCMUpscale": SamplerLCMUpscale,
"SamplerEulerCFGpp": SamplerEulerCFGpp,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"SamplerEulerCFGpp": "SamplerEulerCFG++",
}
|