File size: 39,032 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
"""
    This file is part of ComfyUI.
    Copyright (C) 2024 Comfy

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
"""


import torch
from enum import Enum
import math
import os
import logging
import comfy.utils
import comfy.model_management
import comfy.model_detection
import comfy.model_patcher
import comfy.ops
import comfy.latent_formats

import comfy.cldm.cldm
import comfy.t2i_adapter.adapter
import comfy.ldm.cascade.controlnet
import comfy.cldm.mmdit
import comfy.ldm.hydit.controlnet
import comfy.ldm.flux.controlnet
import comfy.cldm.dit_embedder

def broadcast_image_to(tensor, target_batch_size, batched_number):
    current_batch_size = tensor.shape[0]
    #print(current_batch_size, target_batch_size)
    if current_batch_size == 1:
        return tensor

    per_batch = target_batch_size // batched_number
    tensor = tensor[:per_batch]

    if per_batch > tensor.shape[0]:
        tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)

    current_batch_size = tensor.shape[0]
    if current_batch_size == target_batch_size:
        return tensor
    else:
        return torch.cat([tensor] * batched_number, dim=0)

class StrengthType(Enum):
    CONSTANT = 1
    LINEAR_UP = 2

class ControlBase:
    def __init__(self):
        self.cond_hint_original = None
        self.cond_hint = None
        self.strength = 1.0
        self.timestep_percent_range = (0.0, 1.0)
        self.latent_format = None
        self.vae = None
        self.global_average_pooling = False
        self.timestep_range = None
        self.compression_ratio = 8
        self.upscale_algorithm = 'nearest-exact'
        self.extra_args = {}
        self.previous_controlnet = None
        self.extra_conds = []
        self.strength_type = StrengthType.CONSTANT
        self.concat_mask = False
        self.extra_concat_orig = []
        self.extra_concat = None
        self.preprocess_image = lambda a: a

    def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]):
        self.cond_hint_original = cond_hint
        self.strength = strength
        self.timestep_percent_range = timestep_percent_range
        if self.latent_format is not None:
            if vae is None:
                logging.warning("WARNING: no VAE provided to the controlnet apply node when this controlnet requires one.")
            self.vae = vae
        self.extra_concat_orig = extra_concat.copy()
        if self.concat_mask and len(self.extra_concat_orig) == 0:
            self.extra_concat_orig.append(torch.tensor([[[[1.0]]]]))
        return self

    def pre_run(self, model, percent_to_timestep_function):
        self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
        if self.previous_controlnet is not None:
            self.previous_controlnet.pre_run(model, percent_to_timestep_function)

    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

    def cleanup(self):
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()

        self.cond_hint = None
        self.extra_concat = None
        self.timestep_range = None

    def get_models(self):
        out = []
        if self.previous_controlnet is not None:
            out += self.previous_controlnet.get_models()
        return out

    def copy_to(self, c):
        c.cond_hint_original = self.cond_hint_original
        c.strength = self.strength
        c.timestep_percent_range = self.timestep_percent_range
        c.global_average_pooling = self.global_average_pooling
        c.compression_ratio = self.compression_ratio
        c.upscale_algorithm = self.upscale_algorithm
        c.latent_format = self.latent_format
        c.extra_args = self.extra_args.copy()
        c.vae = self.vae
        c.extra_conds = self.extra_conds.copy()
        c.strength_type = self.strength_type
        c.concat_mask = self.concat_mask
        c.extra_concat_orig = self.extra_concat_orig.copy()
        c.preprocess_image = self.preprocess_image

    def inference_memory_requirements(self, dtype):
        if self.previous_controlnet is not None:
            return self.previous_controlnet.inference_memory_requirements(dtype)
        return 0

    def control_merge(self, control, control_prev, output_dtype):
        out = {'input':[], 'middle':[], 'output': []}

        for key in control:
            control_output = control[key]
            applied_to = set()
            for i in range(len(control_output)):
                x = control_output[i]
                if x is not None:
                    if self.global_average_pooling:
                        x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])

                    if x not in applied_to: #memory saving strategy, allow shared tensors and only apply strength to shared tensors once
                        applied_to.add(x)
                        if self.strength_type == StrengthType.CONSTANT:
                            x *= self.strength
                        elif self.strength_type == StrengthType.LINEAR_UP:
                            x *= (self.strength ** float(len(control_output) - i))

                    if output_dtype is not None and x.dtype != output_dtype:
                        x = x.to(output_dtype)

                out[key].append(x)

        if control_prev is not None:
            for x in ['input', 'middle', 'output']:
                o = out[x]
                for i in range(len(control_prev[x])):
                    prev_val = control_prev[x][i]
                    if i >= len(o):
                        o.append(prev_val)
                    elif prev_val is not None:
                        if o[i] is None:
                            o[i] = prev_val
                        else:
                            if o[i].shape[0] < prev_val.shape[0]:
                                o[i] = prev_val + o[i]
                            else:
                                o[i] = prev_val + o[i] #TODO: change back to inplace add if shared tensors stop being an issue
        return out

    def set_extra_arg(self, argument, value=None):
        self.extra_args[argument] = value


class ControlNet(ControlBase):
    def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT, concat_mask=False, preprocess_image=lambda a: a):
        super().__init__()
        self.control_model = control_model
        self.load_device = load_device
        if control_model is not None:
            self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())

        self.compression_ratio = compression_ratio
        self.global_average_pooling = global_average_pooling
        self.model_sampling_current = None
        self.manual_cast_dtype = manual_cast_dtype
        self.latent_format = latent_format
        self.extra_conds += extra_conds
        self.strength_type = strength_type
        self.concat_mask = concat_mask
        self.preprocess_image = preprocess_image

    def get_control(self, x_noisy, t, cond, batched_number):
        control_prev = None
        if self.previous_controlnet is not None:
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)

        if self.timestep_range is not None:
            if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
                if control_prev is not None:
                    return control_prev
                else:
                    return None

        dtype = self.control_model.dtype
        if self.manual_cast_dtype is not None:
            dtype = self.manual_cast_dtype

        if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
            compression_ratio = self.compression_ratio
            if self.vae is not None:
                compression_ratio *= self.vae.downscale_ratio
            else:
                if self.latent_format is not None:
                    raise ValueError("This Controlnet needs a VAE but none was provided, please use a ControlNetApply node with a VAE input and connect it.")
            self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
            self.cond_hint = self.preprocess_image(self.cond_hint)
            if self.vae is not None:
                loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
                self.cond_hint = self.vae.encode(self.cond_hint.movedim(1, -1))
                comfy.model_management.load_models_gpu(loaded_models)
            if self.latent_format is not None:
                self.cond_hint = self.latent_format.process_in(self.cond_hint)
            if len(self.extra_concat_orig) > 0:
                to_concat = []
                for c in self.extra_concat_orig:
                    c = c.to(self.cond_hint.device)
                    c = comfy.utils.common_upscale(c, self.cond_hint.shape[3], self.cond_hint.shape[2], self.upscale_algorithm, "center")
                    to_concat.append(comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[0]))
                self.cond_hint = torch.cat([self.cond_hint] + to_concat, dim=1)

            self.cond_hint = self.cond_hint.to(device=x_noisy.device, dtype=dtype)
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)

        context = cond.get('crossattn_controlnet', cond['c_crossattn'])
        extra = self.extra_args.copy()
        for c in self.extra_conds:
            temp = cond.get(c, None)
            if temp is not None:
                extra[c] = temp.to(dtype)

        timestep = self.model_sampling_current.timestep(t)
        x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)

        control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra)
        return self.control_merge(control, control_prev, output_dtype=None)

    def copy(self):
        c = ControlNet(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
        c.control_model = self.control_model
        c.control_model_wrapped = self.control_model_wrapped
        self.copy_to(c)
        return c

    def get_models(self):
        out = super().get_models()
        out.append(self.control_model_wrapped)
        return out

    def pre_run(self, model, percent_to_timestep_function):
        super().pre_run(model, percent_to_timestep_function)
        self.model_sampling_current = model.model_sampling

    def cleanup(self):
        self.model_sampling_current = None
        super().cleanup()

class ControlLoraOps:
    class Linear(torch.nn.Module, comfy.ops.CastWeightBiasOp):
        def __init__(self, in_features: int, out_features: int, bias: bool = True,
                    device=None, dtype=None) -> None:
            factory_kwargs = {'device': device, 'dtype': dtype}
            super().__init__()
            self.in_features = in_features
            self.out_features = out_features
            self.weight = None
            self.up = None
            self.down = None
            self.bias = None

        def forward(self, input):
            weight, bias = comfy.ops.cast_bias_weight(self, input)
            if self.up is not None:
                return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
            else:
                return torch.nn.functional.linear(input, weight, bias)

    class Conv2d(torch.nn.Module, comfy.ops.CastWeightBiasOp):
        def __init__(
            self,
            in_channels,
            out_channels,
            kernel_size,
            stride=1,
            padding=0,
            dilation=1,
            groups=1,
            bias=True,
            padding_mode='zeros',
            device=None,
            dtype=None
        ):
            super().__init__()
            self.in_channels = in_channels
            self.out_channels = out_channels
            self.kernel_size = kernel_size
            self.stride = stride
            self.padding = padding
            self.dilation = dilation
            self.transposed = False
            self.output_padding = 0
            self.groups = groups
            self.padding_mode = padding_mode

            self.weight = None
            self.bias = None
            self.up = None
            self.down = None


        def forward(self, input):
            weight, bias = comfy.ops.cast_bias_weight(self, input)
            if self.up is not None:
                return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
            else:
                return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)


class ControlLora(ControlNet):
    def __init__(self, control_weights, global_average_pooling=False, model_options={}): #TODO? model_options
        ControlBase.__init__(self)
        self.control_weights = control_weights
        self.global_average_pooling = global_average_pooling
        self.extra_conds += ["y"]

    def pre_run(self, model, percent_to_timestep_function):
        super().pre_run(model, percent_to_timestep_function)
        controlnet_config = model.model_config.unet_config.copy()
        controlnet_config.pop("out_channels")
        controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
        self.manual_cast_dtype = model.manual_cast_dtype
        dtype = model.get_dtype()
        if self.manual_cast_dtype is None:
            class control_lora_ops(ControlLoraOps, comfy.ops.disable_weight_init):
                pass
        else:
            class control_lora_ops(ControlLoraOps, comfy.ops.manual_cast):
                pass
            dtype = self.manual_cast_dtype

        controlnet_config["operations"] = control_lora_ops
        controlnet_config["dtype"] = dtype
        self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
        self.control_model.to(comfy.model_management.get_torch_device())
        diffusion_model = model.diffusion_model
        sd = diffusion_model.state_dict()
        cm = self.control_model.state_dict()

        for k in sd:
            weight = sd[k]
            try:
                comfy.utils.set_attr_param(self.control_model, k, weight)
            except:
                pass

        for k in self.control_weights:
            if k not in {"lora_controlnet"}:
                comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))

    def copy(self):
        c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
        self.copy_to(c)
        return c

    def cleanup(self):
        del self.control_model
        self.control_model = None
        super().cleanup()

    def get_models(self):
        out = ControlBase.get_models(self)
        return out

    def inference_memory_requirements(self, dtype):
        return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)

def controlnet_config(sd, model_options={}):
    model_config = comfy.model_detection.model_config_from_unet(sd, "", True)

    unet_dtype = model_options.get("dtype", None)
    if unet_dtype is None:
        weight_dtype = comfy.utils.weight_dtype(sd)

        supported_inference_dtypes = list(model_config.supported_inference_dtypes)
        if weight_dtype is not None:
            supported_inference_dtypes.append(weight_dtype)

        unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes)

    load_device = comfy.model_management.get_torch_device()
    manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)

    operations = model_options.get("custom_operations", None)
    if operations is None:
        operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)

    offload_device = comfy.model_management.unet_offload_device()
    return model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device

def controlnet_load_state_dict(control_model, sd):
    missing, unexpected = control_model.load_state_dict(sd, strict=False)

    if len(missing) > 0:
        logging.warning("missing controlnet keys: {}".format(missing))

    if len(unexpected) > 0:
        logging.debug("unexpected controlnet keys: {}".format(unexpected))
    return control_model


def load_controlnet_mmdit(sd, model_options={}):
    new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
    model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
    num_blocks = comfy.model_detection.count_blocks(new_sd, 'joint_blocks.{}.')
    for k in sd:
        new_sd[k] = sd[k]

    concat_mask = False
    control_latent_channels = new_sd.get("pos_embed_input.proj.weight").shape[1]
    if control_latent_channels == 17: #inpaint controlnet
        concat_mask = True

    control_model = comfy.cldm.mmdit.ControlNet(num_blocks=num_blocks, control_latent_channels=control_latent_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
    control_model = controlnet_load_state_dict(control_model, new_sd)

    latent_format = comfy.latent_formats.SD3()
    latent_format.shift_factor = 0 #SD3 controlnet weirdness
    control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
    return control


class ControlNetSD35(ControlNet):
    def pre_run(self, model, percent_to_timestep_function):
        if self.control_model.double_y_emb:
            missing, unexpected = self.control_model.orig_y_embedder.load_state_dict(model.diffusion_model.y_embedder.state_dict(), strict=False)
        else:
            missing, unexpected = self.control_model.x_embedder.load_state_dict(model.diffusion_model.x_embedder.state_dict(), strict=False)
        super().pre_run(model, percent_to_timestep_function)

    def copy(self):
        c = ControlNetSD35(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
        c.control_model = self.control_model
        c.control_model_wrapped = self.control_model_wrapped
        self.copy_to(c)
        return c

def load_controlnet_sd35(sd, model_options={}):
    control_type = -1
    if "control_type" in sd:
        control_type = round(sd.pop("control_type").item())

    # blur_cnet = control_type == 0
    canny_cnet = control_type == 1
    depth_cnet = control_type == 2

    new_sd = {}
    for k in comfy.utils.MMDIT_MAP_BASIC:
        if k[1] in sd:
            new_sd[k[0]] = sd.pop(k[1])
    for k in sd:
        new_sd[k] = sd[k]
    sd = new_sd

    y_emb_shape = sd["y_embedder.mlp.0.weight"].shape
    depth = y_emb_shape[0] // 64
    hidden_size = 64 * depth
    num_heads = depth
    head_dim = hidden_size // num_heads
    num_blocks = comfy.model_detection.count_blocks(new_sd, 'transformer_blocks.{}.')

    load_device = comfy.model_management.get_torch_device()
    offload_device = comfy.model_management.unet_offload_device()
    unet_dtype = comfy.model_management.unet_dtype(model_params=-1)

    manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)

    operations = model_options.get("custom_operations", None)
    if operations is None:
        operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)

    control_model = comfy.cldm.dit_embedder.ControlNetEmbedder(img_size=None,
                                                               patch_size=2,
                                                               in_chans=16,
                                                               num_layers=num_blocks,
                                                               main_model_double=depth,
                                                               double_y_emb=y_emb_shape[0] == y_emb_shape[1],
                                                               attention_head_dim=head_dim,
                                                               num_attention_heads=num_heads,
                                                               adm_in_channels=2048,
                                                               device=offload_device,
                                                               dtype=unet_dtype,
                                                               operations=operations)

    control_model = controlnet_load_state_dict(control_model, sd)

    latent_format = comfy.latent_formats.SD3()
    preprocess_image = lambda a: a
    if canny_cnet:
        preprocess_image = lambda a: (a * 255 * 0.5 + 0.5)
    elif depth_cnet:
        preprocess_image = lambda a: 1.0 - a

    control = ControlNetSD35(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, preprocess_image=preprocess_image)
    return control



def load_controlnet_hunyuandit(controlnet_data, model_options={}):
    model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(controlnet_data, model_options=model_options)

    control_model = comfy.ldm.hydit.controlnet.HunYuanControlNet(operations=operations, device=offload_device, dtype=unet_dtype)
    control_model = controlnet_load_state_dict(control_model, controlnet_data)

    latent_format = comfy.latent_formats.SDXL()
    extra_conds = ['text_embedding_mask', 'encoder_hidden_states_t5', 'text_embedding_mask_t5', 'image_meta_size', 'style', 'cos_cis_img', 'sin_cis_img']
    control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds, strength_type=StrengthType.CONSTANT)
    return control

def load_controlnet_flux_xlabs_mistoline(sd, mistoline=False, model_options={}):
    model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd, model_options=model_options)
    control_model = comfy.ldm.flux.controlnet.ControlNetFlux(mistoline=mistoline, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
    control_model = controlnet_load_state_dict(control_model, sd)
    extra_conds = ['y', 'guidance']
    control = ControlNet(control_model, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
    return control

def load_controlnet_flux_instantx(sd, model_options={}):
    new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
    model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
    for k in sd:
        new_sd[k] = sd[k]

    num_union_modes = 0
    union_cnet = "controlnet_mode_embedder.weight"
    if union_cnet in new_sd:
        num_union_modes = new_sd[union_cnet].shape[0]

    control_latent_channels = new_sd.get("pos_embed_input.weight").shape[1] // 4
    concat_mask = False
    if control_latent_channels == 17:
        concat_mask = True

    control_model = comfy.ldm.flux.controlnet.ControlNetFlux(latent_input=True, num_union_modes=num_union_modes, control_latent_channels=control_latent_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
    control_model = controlnet_load_state_dict(control_model, new_sd)

    latent_format = comfy.latent_formats.Flux()
    extra_conds = ['y', 'guidance']
    control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
    return control

def convert_mistoline(sd):
    return comfy.utils.state_dict_prefix_replace(sd, {"single_controlnet_blocks.": "controlnet_single_blocks."})


def load_controlnet_state_dict(state_dict, model=None, model_options={}):
    controlnet_data = state_dict
    if 'after_proj_list.18.bias' in controlnet_data.keys(): #Hunyuan DiT
        return load_controlnet_hunyuandit(controlnet_data, model_options=model_options)

    if "lora_controlnet" in controlnet_data:
        return ControlLora(controlnet_data, model_options=model_options)

    controlnet_config = None
    supported_inference_dtypes = None

    if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
        controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data)
        diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
        diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
        diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"

        count = 0
        loop = True
        while loop:
            suffix = [".weight", ".bias"]
            for s in suffix:
                k_in = "controlnet_down_blocks.{}{}".format(count, s)
                k_out = "zero_convs.{}.0{}".format(count, s)
                if k_in not in controlnet_data:
                    loop = False
                    break
                diffusers_keys[k_in] = k_out
            count += 1

        count = 0
        loop = True
        while loop:
            suffix = [".weight", ".bias"]
            for s in suffix:
                if count == 0:
                    k_in = "controlnet_cond_embedding.conv_in{}".format(s)
                else:
                    k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
                k_out = "input_hint_block.{}{}".format(count * 2, s)
                if k_in not in controlnet_data:
                    k_in = "controlnet_cond_embedding.conv_out{}".format(s)
                    loop = False
                diffusers_keys[k_in] = k_out
            count += 1

        new_sd = {}
        for k in diffusers_keys:
            if k in controlnet_data:
                new_sd[diffusers_keys[k]] = controlnet_data.pop(k)

        if "control_add_embedding.linear_1.bias" in controlnet_data: #Union Controlnet
            controlnet_config["union_controlnet_num_control_type"] = controlnet_data["task_embedding"].shape[0]
            for k in list(controlnet_data.keys()):
                new_k = k.replace('.attn.in_proj_', '.attn.in_proj.')
                new_sd[new_k] = controlnet_data.pop(k)

        leftover_keys = controlnet_data.keys()
        if len(leftover_keys) > 0:
            logging.warning("leftover keys: {}".format(leftover_keys))
        controlnet_data = new_sd
    elif "controlnet_blocks.0.weight" in controlnet_data:
        if "double_blocks.0.img_attn.norm.key_norm.scale" in controlnet_data:
            return load_controlnet_flux_xlabs_mistoline(controlnet_data, model_options=model_options)
        elif "pos_embed_input.proj.weight" in controlnet_data:
            if "transformer_blocks.0.adaLN_modulation.1.bias" in controlnet_data:
                return load_controlnet_sd35(controlnet_data, model_options=model_options) #Stability sd3.5 format
            else:
                return load_controlnet_mmdit(controlnet_data, model_options=model_options) #SD3 diffusers controlnet
        elif "controlnet_x_embedder.weight" in controlnet_data:
            return load_controlnet_flux_instantx(controlnet_data, model_options=model_options)
    elif "controlnet_blocks.0.linear.weight" in controlnet_data: #mistoline flux
        return load_controlnet_flux_xlabs_mistoline(convert_mistoline(controlnet_data), mistoline=True, model_options=model_options)

    pth_key = 'control_model.zero_convs.0.0.weight'
    pth = False
    key = 'zero_convs.0.0.weight'
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
        prefix = "control_model."
    elif key in controlnet_data:
        prefix = ""
    else:
        net = load_t2i_adapter(controlnet_data, model_options=model_options)
        if net is None:
            logging.error("error could not detect control model type.")
        return net

    if controlnet_config is None:
        model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True)
        supported_inference_dtypes = list(model_config.supported_inference_dtypes)
        controlnet_config = model_config.unet_config

    unet_dtype = model_options.get("dtype", None)
    if unet_dtype is None:
        weight_dtype = comfy.utils.weight_dtype(controlnet_data)

        if supported_inference_dtypes is None:
            supported_inference_dtypes = [comfy.model_management.unet_dtype()]

        if weight_dtype is not None:
            supported_inference_dtypes.append(weight_dtype)

        unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes)

    load_device = comfy.model_management.get_torch_device()

    manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
    operations = model_options.get("custom_operations", None)
    if operations is None:
        operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype)

    controlnet_config["operations"] = operations
    controlnet_config["dtype"] = unet_dtype
    controlnet_config["device"] = comfy.model_management.unet_offload_device()
    controlnet_config.pop("out_channels")
    controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
    control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)

    if pth:
        if 'difference' in controlnet_data:
            if model is not None:
                comfy.model_management.load_models_gpu([model])
                model_sd = model.model_state_dict()
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
                        sd_key = "diffusion_model.{}".format(x[len(c_m):])
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
            else:
                logging.warning("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")

        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
        missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
    else:
        missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)

    if len(missing) > 0:
        logging.warning("missing controlnet keys: {}".format(missing))

    if len(unexpected) > 0:
        logging.debug("unexpected controlnet keys: {}".format(unexpected))

    global_average_pooling = model_options.get("global_average_pooling", False)
    control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
    return control

def load_controlnet(ckpt_path, model=None, model_options={}):
    if "global_average_pooling" not in model_options:
        filename = os.path.splitext(ckpt_path)[0]
        if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
            model_options["global_average_pooling"] = True

    cnet = load_controlnet_state_dict(comfy.utils.load_torch_file(ckpt_path, safe_load=True), model=model, model_options=model_options)
    if cnet is None:
        logging.error("error checkpoint does not contain controlnet or t2i adapter data {}".format(ckpt_path))
    return cnet

class T2IAdapter(ControlBase):
    def __init__(self, t2i_model, channels_in, compression_ratio, upscale_algorithm, device=None):
        super().__init__()
        self.t2i_model = t2i_model
        self.channels_in = channels_in
        self.control_input = None
        self.compression_ratio = compression_ratio
        self.upscale_algorithm = upscale_algorithm
        if device is None:
            device = comfy.model_management.get_torch_device()
        self.device = device

    def scale_image_to(self, width, height):
        unshuffle_amount = self.t2i_model.unshuffle_amount
        width = math.ceil(width / unshuffle_amount) * unshuffle_amount
        height = math.ceil(height / unshuffle_amount) * unshuffle_amount
        return width, height

    def get_control(self, x_noisy, t, cond, batched_number):
        control_prev = None
        if self.previous_controlnet is not None:
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)

        if self.timestep_range is not None:
            if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
                if control_prev is not None:
                    return control_prev
                else:
                    return None

        if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.control_input = None
            self.cond_hint = None
            width, height = self.scale_image_to(x_noisy.shape[3] * self.compression_ratio, x_noisy.shape[2] * self.compression_ratio)
            self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, self.upscale_algorithm, "center").float().to(self.device)
            if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
                self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
        if self.control_input is None:
            self.t2i_model.to(x_noisy.dtype)
            self.t2i_model.to(self.device)
            self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
            self.t2i_model.cpu()

        control_input = {}
        for k in self.control_input:
            control_input[k] = list(map(lambda a: None if a is None else a.clone(), self.control_input[k]))

        return self.control_merge(control_input, control_prev, x_noisy.dtype)

    def copy(self):
        c = T2IAdapter(self.t2i_model, self.channels_in, self.compression_ratio, self.upscale_algorithm)
        self.copy_to(c)
        return c

def load_t2i_adapter(t2i_data, model_options={}): #TODO: model_options
    compression_ratio = 8
    upscale_algorithm = 'nearest-exact'

    if 'adapter' in t2i_data:
        t2i_data = t2i_data['adapter']
    if 'adapter.body.0.resnets.0.block1.weight' in t2i_data: #diffusers format
        prefix_replace = {}
        for i in range(4):
            for j in range(2):
                prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
            prefix_replace["adapter.body.{}.".format(i, j)] = "body.{}.".format(i * 2)
        prefix_replace["adapter."] = ""
        t2i_data = comfy.utils.state_dict_prefix_replace(t2i_data, prefix_replace)
    keys = t2i_data.keys()

    if "body.0.in_conv.weight" in keys:
        cin = t2i_data['body.0.in_conv.weight'].shape[1]
        model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
    elif 'conv_in.weight' in keys:
        cin = t2i_data['conv_in.weight'].shape[1]
        channel = t2i_data['conv_in.weight'].shape[0]
        ksize = t2i_data['body.0.block2.weight'].shape[2]
        use_conv = False
        down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
        if len(down_opts) > 0:
            use_conv = True
        xl = False
        if cin == 256 or cin == 768:
            xl = True
        model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
    elif "backbone.0.0.weight" in keys:
        model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.0.weight'].shape[1], proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
        compression_ratio = 32
        upscale_algorithm = 'bilinear'
    elif "backbone.10.blocks.0.weight" in keys:
        model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.weight'].shape[1], bottleneck_mode="large", proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
        compression_ratio = 1
        upscale_algorithm = 'nearest-exact'
    else:
        return None

    missing, unexpected = model_ad.load_state_dict(t2i_data)
    if len(missing) > 0:
        logging.warning("t2i missing {}".format(missing))

    if len(unexpected) > 0:
        logging.debug("t2i unexpected {}".format(unexpected))

    return T2IAdapter(model_ad, model_ad.input_channels, compression_ratio, upscale_algorithm)