File size: 14,197 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
"""
    This file is part of ComfyUI.
    Copyright (C) 2024 Stability AI

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
"""

import torch
import comfy.model_management
from comfy.cli_args import args
import comfy.float

cast_to = comfy.model_management.cast_to #TODO: remove once no more references

def cast_to_input(weight, input, non_blocking=False, copy=True):
    return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)

def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
    if input is not None:
        if dtype is None:
            dtype = input.dtype
        if bias_dtype is None:
            bias_dtype = dtype
        if device is None:
            device = input.device

    bias = None
    non_blocking = comfy.model_management.device_supports_non_blocking(device)
    if s.bias is not None:
        has_function = s.bias_function is not None
        bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function)
        if has_function:
            bias = s.bias_function(bias)

    has_function = s.weight_function is not None
    weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function)
    if has_function:
        weight = s.weight_function(weight)
    return weight, bias

class CastWeightBiasOp:
    comfy_cast_weights = False
    weight_function = None
    bias_function = None

class disable_weight_init:
    class Linear(torch.nn.Linear, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.linear(input, weight, bias)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class Conv1d(torch.nn.Conv1d, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return self._conv_forward(input, weight, bias)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class Conv2d(torch.nn.Conv2d, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return self._conv_forward(input, weight, bias)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class Conv3d(torch.nn.Conv3d, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return self._conv_forward(input, weight, bias)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class GroupNorm(torch.nn.GroupNorm, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)


    class LayerNorm(torch.nn.LayerNorm, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input):
            if self.weight is not None:
                weight, bias = cast_bias_weight(self, input)
            else:
                weight = None
                bias = None
            return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input, output_size=None):
            num_spatial_dims = 2
            output_padding = self._output_padding(
                input, output_size, self.stride, self.padding, self.kernel_size,
                num_spatial_dims, self.dilation)

            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.conv_transpose2d(
                input, weight, bias, self.stride, self.padding,
                output_padding, self.groups, self.dilation)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class ConvTranspose1d(torch.nn.ConvTranspose1d, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input, output_size=None):
            num_spatial_dims = 1
            output_padding = self._output_padding(
                input, output_size, self.stride, self.padding, self.kernel_size,
                num_spatial_dims, self.dilation)

            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.conv_transpose1d(
                input, weight, bias, self.stride, self.padding,
                output_padding, self.groups, self.dilation)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class Embedding(torch.nn.Embedding, CastWeightBiasOp):
        def reset_parameters(self):
            self.bias = None
            return None

        def forward_comfy_cast_weights(self, input, out_dtype=None):
            output_dtype = out_dtype
            if self.weight.dtype == torch.float16 or self.weight.dtype == torch.bfloat16:
                out_dtype = None
            weight, bias = cast_bias_weight(self, device=input.device, dtype=out_dtype)
            return torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                if "out_dtype" in kwargs:
                    kwargs.pop("out_dtype")
                return super().forward(*args, **kwargs)

    @classmethod
    def conv_nd(s, dims, *args, **kwargs):
        if dims == 2:
            return s.Conv2d(*args, **kwargs)
        elif dims == 3:
            return s.Conv3d(*args, **kwargs)
        else:
            raise ValueError(f"unsupported dimensions: {dims}")


class manual_cast(disable_weight_init):
    class Linear(disable_weight_init.Linear):
        comfy_cast_weights = True

    class Conv1d(disable_weight_init.Conv1d):
        comfy_cast_weights = True

    class Conv2d(disable_weight_init.Conv2d):
        comfy_cast_weights = True

    class Conv3d(disable_weight_init.Conv3d):
        comfy_cast_weights = True

    class GroupNorm(disable_weight_init.GroupNorm):
        comfy_cast_weights = True

    class LayerNorm(disable_weight_init.LayerNorm):
        comfy_cast_weights = True

    class ConvTranspose2d(disable_weight_init.ConvTranspose2d):
        comfy_cast_weights = True

    class ConvTranspose1d(disable_weight_init.ConvTranspose1d):
        comfy_cast_weights = True

    class Embedding(disable_weight_init.Embedding):
        comfy_cast_weights = True


def fp8_linear(self, input):
    dtype = self.weight.dtype
    if dtype not in [torch.float8_e4m3fn]:
        return None

    tensor_2d = False
    if len(input.shape) == 2:
        tensor_2d = True
        input = input.unsqueeze(1)


    if len(input.shape) == 3:
        w, bias = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input.dtype)
        w = w.t()

        scale_weight = self.scale_weight
        scale_input = self.scale_input
        if scale_weight is None:
            scale_weight = torch.ones((), device=input.device, dtype=torch.float32)
        else:
            scale_weight = scale_weight.to(input.device)

        if scale_input is None:
            scale_input = torch.ones((), device=input.device, dtype=torch.float32)
            inn = input.reshape(-1, input.shape[2]).to(dtype)
        else:
            scale_input = scale_input.to(input.device)
            inn = (input * (1.0 / scale_input).to(input.dtype)).reshape(-1, input.shape[2]).to(dtype)

        if bias is not None:
            o = torch._scaled_mm(inn, w, out_dtype=input.dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight)
        else:
            o = torch._scaled_mm(inn, w, out_dtype=input.dtype, scale_a=scale_input, scale_b=scale_weight)

        if isinstance(o, tuple):
            o = o[0]

        if tensor_2d:
            return o.reshape(input.shape[0], -1)

        return o.reshape((-1, input.shape[1], self.weight.shape[0]))

    return None

class fp8_ops(manual_cast):
    class Linear(manual_cast.Linear):
        def reset_parameters(self):
            self.scale_weight = None
            self.scale_input = None
            return None

        def forward_comfy_cast_weights(self, input):
            out = fp8_linear(self, input)
            if out is not None:
                return out

            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.linear(input, weight, bias)

def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
    class scaled_fp8_op(manual_cast):
        class Linear(manual_cast.Linear):
            def __init__(self, *args, **kwargs):
                if override_dtype is not None:
                    kwargs['dtype'] = override_dtype
                super().__init__(*args, **kwargs)

            def reset_parameters(self):
                if not hasattr(self, 'scale_weight'):
                    self.scale_weight = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)

                if not scale_input:
                    self.scale_input = None

                if not hasattr(self, 'scale_input'):
                    self.scale_input = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
                return None

            def forward_comfy_cast_weights(self, input):
                if fp8_matrix_mult:
                    out = fp8_linear(self, input)
                    if out is not None:
                        return out

                weight, bias = cast_bias_weight(self, input)

                if weight.numel() < input.numel(): #TODO: optimize
                    return torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias)
                else:
                    return torch.nn.functional.linear(input * self.scale_weight.to(device=weight.device, dtype=weight.dtype), weight, bias)

            def convert_weight(self, weight, inplace=False, **kwargs):
                if inplace:
                    weight *= self.scale_weight.to(device=weight.device, dtype=weight.dtype)
                    return weight
                else:
                    return weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype)

            def set_weight(self, weight, inplace_update=False, seed=None, **kwargs):
                weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed)
                if inplace_update:
                    self.weight.data.copy_(weight)
                else:
                    self.weight = torch.nn.Parameter(weight, requires_grad=False)

    return scaled_fp8_op

def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None):
    fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
    if scaled_fp8 is not None:
        return scaled_fp8_ops(fp8_matrix_mult=fp8_compute, scale_input=True, override_dtype=scaled_fp8)

    if fp8_compute and (fp8_optimizations or args.fast) and not disable_fast_fp8:
        return fp8_ops

    if compute_dtype is None or weight_dtype == compute_dtype:
        return disable_weight_init

    return manual_cast