File size: 10,494 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import re
import torch
import logging

# conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py

# =================#
# UNet Conversion #
# =================#

unet_conversion_map = [
    # (stable-diffusion, HF Diffusers)
    ("time_embed.0.weight", "time_embedding.linear_1.weight"),
    ("time_embed.0.bias", "time_embedding.linear_1.bias"),
    ("time_embed.2.weight", "time_embedding.linear_2.weight"),
    ("time_embed.2.bias", "time_embedding.linear_2.bias"),
    ("input_blocks.0.0.weight", "conv_in.weight"),
    ("input_blocks.0.0.bias", "conv_in.bias"),
    ("out.0.weight", "conv_norm_out.weight"),
    ("out.0.bias", "conv_norm_out.bias"),
    ("out.2.weight", "conv_out.weight"),
    ("out.2.bias", "conv_out.bias"),
]

unet_conversion_map_resnet = [
    # (stable-diffusion, HF Diffusers)
    ("in_layers.0", "norm1"),
    ("in_layers.2", "conv1"),
    ("out_layers.0", "norm2"),
    ("out_layers.3", "conv2"),
    ("emb_layers.1", "time_emb_proj"),
    ("skip_connection", "conv_shortcut"),
]

unet_conversion_map_layer = []
# hardcoded number of downblocks and resnets/attentions...
# would need smarter logic for other networks.
for i in range(4):
    # loop over downblocks/upblocks

    for j in range(2):
        # loop over resnets/attentions for downblocks
        hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
        sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0."
        unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))

        if i < 3:
            # no attention layers in down_blocks.3
            hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
            sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1."
            unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))

    for j in range(3):
        # loop over resnets/attentions for upblocks
        hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
        sd_up_res_prefix = f"output_blocks.{3 * i + j}.0."
        unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))

        if i > 0:
            # no attention layers in up_blocks.0
            hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
            sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1."
            unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))

    if i < 3:
        # no downsample in down_blocks.3
        hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
        sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op."
        unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))

        # no upsample in up_blocks.3
        hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
        sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{1 if i == 0 else 2}."
        unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))

hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))

for j in range(2):
    hf_mid_res_prefix = f"mid_block.resnets.{j}."
    sd_mid_res_prefix = f"middle_block.{2 * j}."
    unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))


def convert_unet_state_dict(unet_state_dict):
    # buyer beware: this is a *brittle* function,
    # and correct output requires that all of these pieces interact in
    # the exact order in which I have arranged them.
    mapping = {k: k for k in unet_state_dict.keys()}
    for sd_name, hf_name in unet_conversion_map:
        mapping[hf_name] = sd_name
    for k, v in mapping.items():
        if "resnets" in k:
            for sd_part, hf_part in unet_conversion_map_resnet:
                v = v.replace(hf_part, sd_part)
            mapping[k] = v
    for k, v in mapping.items():
        for sd_part, hf_part in unet_conversion_map_layer:
            v = v.replace(hf_part, sd_part)
        mapping[k] = v
    new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
    return new_state_dict


# ================#
# VAE Conversion #
# ================#

vae_conversion_map = [
    # (stable-diffusion, HF Diffusers)
    ("nin_shortcut", "conv_shortcut"),
    ("norm_out", "conv_norm_out"),
    ("mid.attn_1.", "mid_block.attentions.0."),
]

for i in range(4):
    # down_blocks have two resnets
    for j in range(2):
        hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
        sd_down_prefix = f"encoder.down.{i}.block.{j}."
        vae_conversion_map.append((sd_down_prefix, hf_down_prefix))

    if i < 3:
        hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
        sd_downsample_prefix = f"down.{i}.downsample."
        vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))

        hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
        sd_upsample_prefix = f"up.{3 - i}.upsample."
        vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))

    # up_blocks have three resnets
    # also, up blocks in hf are numbered in reverse from sd
    for j in range(3):
        hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
        sd_up_prefix = f"decoder.up.{3 - i}.block.{j}."
        vae_conversion_map.append((sd_up_prefix, hf_up_prefix))

# this part accounts for mid blocks in both the encoder and the decoder
for i in range(2):
    hf_mid_res_prefix = f"mid_block.resnets.{i}."
    sd_mid_res_prefix = f"mid.block_{i + 1}."
    vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))

vae_conversion_map_attn = [
    # (stable-diffusion, HF Diffusers)
    ("norm.", "group_norm."),
    ("q.", "query."),
    ("k.", "key."),
    ("v.", "value."),
    ("q.", "to_q."),
    ("k.", "to_k."),
    ("v.", "to_v."),
    ("proj_out.", "to_out.0."),
    ("proj_out.", "proj_attn."),
]


def reshape_weight_for_sd(w):
    # convert HF linear weights to SD conv2d weights
    return w.reshape(*w.shape, 1, 1)


def convert_vae_state_dict(vae_state_dict):
    mapping = {k: k for k in vae_state_dict.keys()}
    for k, v in mapping.items():
        for sd_part, hf_part in vae_conversion_map:
            v = v.replace(hf_part, sd_part)
        mapping[k] = v
    for k, v in mapping.items():
        if "attentions" in k:
            for sd_part, hf_part in vae_conversion_map_attn:
                v = v.replace(hf_part, sd_part)
            mapping[k] = v
    new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
    weights_to_convert = ["q", "k", "v", "proj_out"]
    for k, v in new_state_dict.items():
        for weight_name in weights_to_convert:
            if f"mid.attn_1.{weight_name}.weight" in k:
                logging.debug(f"Reshaping {k} for SD format")
                new_state_dict[k] = reshape_weight_for_sd(v)
    return new_state_dict


# =========================#
# Text Encoder Conversion #
# =========================#


textenc_conversion_lst = [
    # (stable-diffusion, HF Diffusers)
    ("resblocks.", "text_model.encoder.layers."),
    ("ln_1", "layer_norm1"),
    ("ln_2", "layer_norm2"),
    (".c_fc.", ".fc1."),
    (".c_proj.", ".fc2."),
    (".attn", ".self_attn"),
    ("ln_final.", "transformer.text_model.final_layer_norm."),
    ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
    ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
]
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
textenc_pattern = re.compile("|".join(protected.keys()))

# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
code2idx = {"q": 0, "k": 1, "v": 2}

# This function exists because at the time of writing torch.cat can't do fp8 with cuda
def cat_tensors(tensors):
    x = 0
    for t in tensors:
        x += t.shape[0]

    shape = [x] + list(tensors[0].shape)[1:]
    out = torch.empty(shape, device=tensors[0].device, dtype=tensors[0].dtype)

    x = 0
    for t in tensors:
        out[x:x + t.shape[0]] = t
        x += t.shape[0]

    return out

def convert_text_enc_state_dict_v20(text_enc_dict, prefix=""):
    new_state_dict = {}
    capture_qkv_weight = {}
    capture_qkv_bias = {}
    for k, v in text_enc_dict.items():
        if not k.startswith(prefix):
            continue
        if (
                k.endswith(".self_attn.q_proj.weight")
                or k.endswith(".self_attn.k_proj.weight")
                or k.endswith(".self_attn.v_proj.weight")
        ):
            k_pre = k[: -len(".q_proj.weight")]
            k_code = k[-len("q_proj.weight")]
            if k_pre not in capture_qkv_weight:
                capture_qkv_weight[k_pre] = [None, None, None]
            capture_qkv_weight[k_pre][code2idx[k_code]] = v
            continue

        if (
                k.endswith(".self_attn.q_proj.bias")
                or k.endswith(".self_attn.k_proj.bias")
                or k.endswith(".self_attn.v_proj.bias")
        ):
            k_pre = k[: -len(".q_proj.bias")]
            k_code = k[-len("q_proj.bias")]
            if k_pre not in capture_qkv_bias:
                capture_qkv_bias[k_pre] = [None, None, None]
            capture_qkv_bias[k_pre][code2idx[k_code]] = v
            continue

        text_proj = "transformer.text_projection.weight"
        if k.endswith(text_proj):
            new_state_dict[k.replace(text_proj, "text_projection")] = v.transpose(0, 1).contiguous()
        else:
            relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
            new_state_dict[relabelled_key] = v

    for k_pre, tensors in capture_qkv_weight.items():
        if None in tensors:
            raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
        relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
        new_state_dict[relabelled_key + ".in_proj_weight"] = cat_tensors(tensors)

    for k_pre, tensors in capture_qkv_bias.items():
        if None in tensors:
            raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
        relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
        new_state_dict[relabelled_key + ".in_proj_bias"] = cat_tensors(tensors)

    return new_state_dict


def convert_text_enc_state_dict(text_enc_dict):
    return text_enc_dict