Spaces:
Running
on
L40S
Running
on
L40S
File size: 5,289 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import torch
import comfy.model_management
import comfy.sampler_helpers
import comfy.samplers
import comfy.utils
import node_helpers
def perp_neg(x, noise_pred_pos, noise_pred_neg, noise_pred_nocond, neg_scale, cond_scale):
pos = noise_pred_pos - noise_pred_nocond
neg = noise_pred_neg - noise_pred_nocond
perp = neg - ((torch.mul(neg, pos).sum())/(torch.norm(pos)**2)) * pos
perp_neg = perp * neg_scale
cfg_result = noise_pred_nocond + cond_scale*(pos - perp_neg)
return cfg_result
#TODO: This node should be removed, it has been replaced with PerpNegGuider
class PerpNeg:
@classmethod
def INPUT_TYPES(s):
return {"required": {"model": ("MODEL", ),
"empty_conditioning": ("CONDITIONING", ),
"neg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "_for_testing"
DEPRECATED = True
def patch(self, model, empty_conditioning, neg_scale):
m = model.clone()
nocond = comfy.sampler_helpers.convert_cond(empty_conditioning)
def cfg_function(args):
model = args["model"]
noise_pred_pos = args["cond_denoised"]
noise_pred_neg = args["uncond_denoised"]
cond_scale = args["cond_scale"]
x = args["input"]
sigma = args["sigma"]
model_options = args["model_options"]
nocond_processed = comfy.samplers.encode_model_conds(model.extra_conds, nocond, x, x.device, "negative")
(noise_pred_nocond,) = comfy.samplers.calc_cond_batch(model, [nocond_processed], x, sigma, model_options)
cfg_result = x - perp_neg(x, noise_pred_pos, noise_pred_neg, noise_pred_nocond, neg_scale, cond_scale)
return cfg_result
m.set_model_sampler_cfg_function(cfg_function)
return (m, )
class Guider_PerpNeg(comfy.samplers.CFGGuider):
def set_conds(self, positive, negative, empty_negative_prompt):
empty_negative_prompt = node_helpers.conditioning_set_values(empty_negative_prompt, {"prompt_type": "negative"})
self.inner_set_conds({"positive": positive, "empty_negative_prompt": empty_negative_prompt, "negative": negative})
def set_cfg(self, cfg, neg_scale):
self.cfg = cfg
self.neg_scale = neg_scale
def predict_noise(self, x, timestep, model_options={}, seed=None):
# in CFGGuider.predict_noise, we call sampling_function(), which uses cfg_function() to compute pos & neg
# but we'd rather do a single batch of sampling pos, neg, and empty, so we call calc_cond_batch([pos,neg,empty]) directly
positive_cond = self.conds.get("positive", None)
negative_cond = self.conds.get("negative", None)
empty_cond = self.conds.get("empty_negative_prompt", None)
(noise_pred_pos, noise_pred_neg, noise_pred_empty) = \
comfy.samplers.calc_cond_batch(self.inner_model, [positive_cond, negative_cond, empty_cond], x, timestep, model_options)
cfg_result = perp_neg(x, noise_pred_pos, noise_pred_neg, noise_pred_empty, self.neg_scale, self.cfg)
# normally this would be done in cfg_function, but we skipped
# that for efficiency: we can compute the noise predictions in
# a single call to calc_cond_batch() (rather than two)
# so we replicate the hook here
for fn in model_options.get("sampler_post_cfg_function", []):
args = {
"denoised": cfg_result,
"cond": positive_cond,
"uncond": negative_cond,
"model": self.inner_model,
"uncond_denoised": noise_pred_neg,
"cond_denoised": noise_pred_pos,
"sigma": timestep,
"model_options": model_options,
"input": x,
# not in the original call in samplers.py:cfg_function, but made available for future hooks
"empty_cond": empty_cond,
"empty_cond_denoised": noise_pred_empty,}
cfg_result = fn(args)
return cfg_result
class PerpNegGuider:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"empty_conditioning": ("CONDITIONING", ),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
"neg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}),
}
}
RETURN_TYPES = ("GUIDER",)
FUNCTION = "get_guider"
CATEGORY = "_for_testing"
def get_guider(self, model, positive, negative, empty_conditioning, cfg, neg_scale):
guider = Guider_PerpNeg(model)
guider.set_conds(positive, negative, empty_conditioning)
guider.set_cfg(cfg, neg_scale)
return (guider,)
NODE_CLASS_MAPPINGS = {
"PerpNeg": PerpNeg,
"PerpNegGuider": PerpNegGuider,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"PerpNeg": "Perp-Neg (DEPRECATED by PerpNegGuider)",
}
|