File size: 62,488 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
import torch
from torchvision import transforms
import json
from PIL import Image, ImageDraw, ImageFont, ImageColor, ImageFilter, ImageChops
import numpy as np
from ..utility.utility import pil2tensor
import folder_paths
import io
import base64
        
from comfy.utils import common_upscale

def plot_coordinates_to_tensor(coordinates, height, width, bbox_height, bbox_width, size_multiplier, prompt):
        import matplotlib
        matplotlib.use('Agg')
        from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
        text_color = '#999999'
        bg_color = '#353535'
        matplotlib.pyplot.rcParams['text.color'] = text_color
        fig, ax = matplotlib.pyplot.subplots(figsize=(width/100, height/100), dpi=100)
        fig.patch.set_facecolor(bg_color)
        ax.set_facecolor(bg_color)
        ax.grid(color=text_color, linestyle='-', linewidth=0.5)
        ax.set_xlabel('x', color=text_color)
        ax.set_ylabel('y', color=text_color)
        for text in ax.get_xticklabels() + ax.get_yticklabels():
            text.set_color(text_color)
        ax.set_title('position for: ' + prompt)
        ax.set_xlabel('X Coordinate')
        ax.set_ylabel('Y Coordinate')
        #ax.legend().remove()
        ax.set_xlim(0, width) # Set the x-axis to match the input latent width
        ax.set_ylim(height, 0) # Set the y-axis to match the input latent height, with (0,0) at top-left
        # Adjust the margins of the subplot
        matplotlib.pyplot.subplots_adjust(left=0.08, right=0.95, bottom=0.05, top=0.95, wspace=0.2, hspace=0.2)

        cmap = matplotlib.pyplot.get_cmap('rainbow')
        image_batch = []
        canvas = FigureCanvas(fig)
        width, height = fig.get_size_inches() * fig.get_dpi()
        # Draw a box at each coordinate
        for i, ((x, y), size) in enumerate(zip(coordinates, size_multiplier)):
            color_index = i / (len(coordinates) - 1)
            color = cmap(color_index)
            draw_height = bbox_height * size
            draw_width = bbox_width * size
            rect = matplotlib.patches.Rectangle((x - draw_width/2, y - draw_height/2), draw_width, draw_height,
                                            linewidth=1, edgecolor=color, facecolor='none', alpha=0.5)
            ax.add_patch(rect)

            # Check if there is a next coordinate to draw an arrow to
            if i < len(coordinates) - 1:
                x1, y1 = coordinates[i]
                x2, y2 = coordinates[i + 1]
                ax.annotate("", xy=(x2, y2), xytext=(x1, y1),
                            arrowprops=dict(arrowstyle="->",
                                            linestyle="-",
                                            lw=1,
                                            color=color,
                                            mutation_scale=20))
            canvas.draw()
            image_np = np.frombuffer(canvas.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3).copy()
            image_tensor = torch.from_numpy(image_np).float() / 255.0
            image_tensor = image_tensor.unsqueeze(0)
            image_batch.append(image_tensor)
            
        matplotlib.pyplot.close(fig)
        image_batch_tensor = torch.cat(image_batch, dim=0)

        return image_batch_tensor

class PlotCoordinates:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                              "coordinates": ("STRING", {"forceInput": True}),
                              "text": ("STRING", {"default": 'title', "multiline": False}),
                              "width": ("INT", {"default": 512, "min": 8, "max": 4096, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 8, "max": 4096, "step": 8}),
                              "bbox_width": ("INT", {"default": 128, "min": 8, "max": 4096, "step": 8}),
                              "bbox_height": ("INT", {"default": 128, "min": 8, "max": 4096, "step": 8}),
                            },
                "optional": {"size_multiplier": ("FLOAT", {"default": [1.0], "forceInput": True})},
                }
    RETURN_TYPES = ("IMAGE", "INT", "INT", "INT", "INT",)
    RETURN_NAMES = ("images", "width", "height", "bbox_width", "bbox_height",)
    FUNCTION = "append"
    CATEGORY = "KJNodes/experimental"
    DESCRIPTION = """
Plots coordinates to sequence of images using Matplotlib.  

"""

    def append(self, coordinates, text, width, height, bbox_width, bbox_height, size_multiplier=[1.0]):
        coordinates = json.loads(coordinates.replace("'", '"'))
        coordinates = [(coord['x'], coord['y']) for coord in coordinates]
        batch_size = len(coordinates)
        if not size_multiplier or len(size_multiplier) != batch_size:
            size_multiplier = [0] * batch_size
        else:
            size_multiplier = size_multiplier * (batch_size // len(size_multiplier)) + size_multiplier[:batch_size % len(size_multiplier)]

        plot_image_tensor = plot_coordinates_to_tensor(coordinates, height, width, bbox_height, bbox_width, size_multiplier, text)
        
        return (plot_image_tensor, width, height, bbox_width, bbox_height)
    
class SplineEditor:

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "points_store": ("STRING", {"multiline": False}),
                "coordinates": ("STRING", {"multiline": False}),
                "mask_width": ("INT", {"default": 512, "min": 8, "max": 4096, "step": 8}),
                "mask_height": ("INT", {"default": 512, "min": 8, "max": 4096, "step": 8}),
                "points_to_sample": ("INT", {"default": 16, "min": 2, "max": 1000, "step": 1}),
                "sampling_method": (
                [   
                    'path',
                    'time',
                    'controlpoints'
                ],
                {
                    "default": 'time'
                }),
                "interpolation": (
                [   
                    'cardinal',
                    'monotone',
                    'basis',
                    'linear',
                    'step-before',
                    'step-after',
                    'polar',
                    'polar-reverse',
                ],
                {
                "default": 'cardinal'
                    }),
                "tension": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
                "repeat_output": ("INT", {"default": 1, "min": 1, "max": 4096, "step": 1}),
                "float_output_type": (
                [   
                    'list',
                    'pandas series',
                    'tensor',
                ],
                {
                    "default": 'list'
                }),
            },
            "optional": {
                "min_value": ("FLOAT", {"default": 0.0, "min": -10000.0, "max": 10000.0, "step": 0.01}),
                "max_value": ("FLOAT", {"default": 1.0, "min": -10000.0, "max": 10000.0, "step": 0.01}),
                "bg_image": ("IMAGE", ),
            }
        }

    RETURN_TYPES = ("MASK", "STRING", "FLOAT", "INT", "STRING",)
    RETURN_NAMES = ("mask", "coord_str", "float", "count", "normalized_str",)
    FUNCTION = "splinedata"
    CATEGORY = "KJNodes/weights"
    DESCRIPTION = """
# WORK IN PROGRESS  
Do not count on this as part of your workflow yet,  
probably contains lots of bugs and stability is not  
guaranteed!!  
  
## Graphical editor to create values for various   
## schedules and/or mask batches.  

**Shift + click** to add control point at end.
**Ctrl + click** to add control point (subdivide) between two points.  
**Right click on a point** to delete it.    
Note that you can't delete from start/end.  
  
Right click on canvas for context menu:  
These are purely visual options, doesn't affect the output:  
 - Toggle handles visibility
 - Display sample points: display the points to be returned.  

**points_to_sample** value sets the number of samples  
returned from the **drawn spline itself**, this is independent from the  
actual control points, so the interpolation type matters.  
sampling_method: 
 - time: samples along the time axis, used for schedules  
 - path: samples along the path itself, useful for coordinates  

output types:
 - mask batch  
        example compatible nodes: anything that takes masks  
 - list of floats
        example compatible nodes: IPAdapter weights  
 - pandas series
        example compatible nodes: anything that takes Fizz'  
        nodes Batch Value Schedule  
 - torch tensor  
        example compatible nodes: unknown
"""

    def splinedata(self, mask_width, mask_height, coordinates, float_output_type, interpolation, 
                   points_to_sample, sampling_method, points_store, tension, repeat_output, 
                   min_value=0.0, max_value=1.0, bg_image=None):
        
        coordinates = json.loads(coordinates)
        normalized = []
        normalized_y_values = []
        for coord in coordinates:
            coord['x'] = int(round(coord['x']))
            coord['y'] = int(round(coord['y']))
            norm_x = (1.0 - (coord['x'] / mask_height) - 0.0) * (max_value - min_value) + min_value
            norm_y = (1.0 - (coord['y'] / mask_height) - 0.0) * (max_value - min_value) + min_value
            normalized_y_values.append(norm_y)
            normalized.append({'x':norm_x, 'y':norm_y})
        if float_output_type == 'list':
            out_floats = normalized_y_values * repeat_output
        elif float_output_type == 'pandas series':
            try:
                import pandas as pd
            except:
                raise Exception("MaskOrImageToWeight: pandas is not installed. Please install pandas to use this output_type")
            out_floats = pd.Series(normalized_y_values * repeat_output),
        elif float_output_type == 'tensor':
            out_floats = torch.tensor(normalized_y_values * repeat_output, dtype=torch.float32)
        # Create a color map for grayscale intensities
        color_map = lambda y: torch.full((mask_height, mask_width, 3), y, dtype=torch.float32)

        # Create image tensors for each normalized y value
        mask_tensors = [color_map(y) for y in normalized_y_values]
        masks_out = torch.stack(mask_tensors)
        masks_out = masks_out.repeat(repeat_output, 1, 1, 1)
        masks_out = masks_out.mean(dim=-1)
        if bg_image is None:
            return (masks_out, json.dumps(coordinates), out_floats, len(out_floats) , json.dumps(normalized))
        else:
            transform = transforms.ToPILImage()
            image = transform(bg_image[0].permute(2, 0, 1))
            buffered = io.BytesIO()
            image.save(buffered, format="JPEG", quality=75)

            # Step 3: Encode the image bytes to a Base64 string
            img_bytes = buffered.getvalue()
            img_base64 = base64.b64encode(img_bytes).decode('utf-8')
        return {
                "ui": {"bg_image": [img_base64]},
                "result":(masks_out, json.dumps(coordinates), out_floats, len(out_floats) , json.dumps(normalized))
                }
     

class CreateShapeMaskOnPath:
    
    RETURN_TYPES = ("MASK", "MASK",)
    RETURN_NAMES = ("mask", "mask_inverted",)
    FUNCTION = "createshapemask"
    CATEGORY = "KJNodes/masking/generate"
    DESCRIPTION = """
Creates a mask or batch of masks with the specified shape.  
Locations are center locations.  
"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "shape": (
            [   'circle',
                'square',
                'triangle',
            ],
            {
            "default": 'circle'
             }),
                "coordinates": ("STRING", {"forceInput": True}),
                "frame_width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
                "frame_height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
                "shape_width": ("INT", {"default": 128,"min": 8, "max": 4096, "step": 1}),
                "shape_height": ("INT", {"default": 128,"min": 8, "max": 4096, "step": 1}),
        },
        "optional": {
            "size_multiplier": ("FLOAT", {"default": [1.0], "forceInput": True}),
        }
    } 

    def createshapemask(self, coordinates, frame_width, frame_height, shape_width, shape_height, shape, size_multiplier=[1.0]):
        # Define the number of images in the batch
        coordinates = coordinates.replace("'", '"')
        coordinates = json.loads(coordinates)

        batch_size = len(coordinates)
        out = []
        color = "white"
        if not size_multiplier or len(size_multiplier) != batch_size:
            size_multiplier = [0] * batch_size
        else:
            size_multiplier = size_multiplier * (batch_size // len(size_multiplier)) + size_multiplier[:batch_size % len(size_multiplier)]
        for i, coord in enumerate(coordinates):
            image = Image.new("RGB", (frame_width, frame_height), "black")
            draw = ImageDraw.Draw(image)

            # Calculate the size for this frame and ensure it's not less than 0
            current_width = max(0, shape_width + i * size_multiplier[i])
            current_height = max(0, shape_height + i * size_multiplier[i])

            location_x = coord['x']
            location_y = coord['y']

            if shape == 'circle' or shape == 'square':
                # Define the bounding box for the shape
                left_up_point = (location_x - current_width // 2, location_y - current_height // 2)
                right_down_point = (location_x + current_width // 2, location_y + current_height // 2)
                two_points = [left_up_point, right_down_point]

                if shape == 'circle':
                    draw.ellipse(two_points, fill=color)
                elif shape == 'square':
                    draw.rectangle(two_points, fill=color)
                    
            elif shape == 'triangle':
                # Define the points for the triangle
                left_up_point = (location_x - current_width // 2, location_y + current_height // 2) # bottom left
                right_down_point = (location_x + current_width // 2, location_y + current_height // 2) # bottom right
                top_point = (location_x, location_y - current_height // 2) # top point
                draw.polygon([top_point, left_up_point, right_down_point], fill=color)

            image = pil2tensor(image)
            mask = image[:, :, :, 0]
            out.append(mask)
        outstack = torch.cat(out, dim=0)
        return (outstack, 1.0 - outstack,)

class CreateShapeImageOnPath:
    
    RETURN_TYPES = ("IMAGE", "MASK",)
    RETURN_NAMES = ("image","mask", )
    FUNCTION = "createshapemask"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Creates an image or batch of images with the specified shape.  
Locations are center locations.  
"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "shape": (
            [   'circle',
                'square',
                'triangle',
            ],
            {
            "default": 'circle'
             }),
                "coordinates": ("STRING", {"forceInput": True}),
                "frame_width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
                "frame_height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
                "shape_width": ("INT", {"default": 128,"min": 2, "max": 4096, "step": 1}),
                "shape_height": ("INT", {"default": 128,"min": 2, "max": 4096, "step": 1}),
                "shape_color": ("STRING", {"default": 'white'}),
                "bg_color": ("STRING", {"default": 'black'}),
                "blur_radius": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100, "step": 0.1}),
                "intensity": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 100.0, "step": 0.01}),
        },
        "optional": {
            "size_multiplier": ("FLOAT", {"default": [1.0], "forceInput": True}),
            "trailing": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
        }
    } 

    def createshapemask(self, coordinates, frame_width, frame_height, shape_width, shape_height, shape_color, 
                        bg_color, blur_radius, shape, intensity, size_multiplier=[1.0], accumulate=False, trailing=1.0):
        # Define the number of images in the batch
        if len(coordinates) < 10:
            coords_list = []
            for coords in coordinates:
                coords = json.loads(coords.replace("'", '"'))
                coords_list.append(coords)
        else:
            coords = json.loads(coordinates.replace("'", '"'))
            coords_list = [coords]

        batch_size = len(coords_list[0])
        images_list = []
        masks_list = []

        if not size_multiplier or len(size_multiplier) != batch_size:
            size_multiplier = [0] * batch_size
        else:
            size_multiplier = size_multiplier * (batch_size // len(size_multiplier)) + size_multiplier[:batch_size % len(size_multiplier)]

        previous_output = None

        for i in range(batch_size):
            image = Image.new("RGB", (frame_width, frame_height), bg_color)
            draw = ImageDraw.Draw(image)

            # Calculate the size for this frame and ensure it's not less than 0
            current_width = max(0, shape_width + i * size_multiplier[i])
            current_height = max(0, shape_height + i * size_multiplier[i])
            
            for coords in coords_list:
                location_x = coords[i]['x']
                location_y = coords[i]['y']
            
                if shape == 'circle' or shape == 'square':
                    # Define the bounding box for the shape
                    left_up_point = (location_x - current_width // 2, location_y - current_height // 2)
                    right_down_point = (location_x + current_width // 2, location_y + current_height // 2)
                    two_points = [left_up_point, right_down_point]

                    if shape == 'circle':
                        draw.ellipse(two_points, fill=shape_color)
                    elif shape == 'square':
                        draw.rectangle(two_points, fill=shape_color)
                        
                elif shape == 'triangle':
                    # Define the points for the triangle
                    left_up_point = (location_x - current_width // 2, location_y + current_height // 2) # bottom left
                    right_down_point = (location_x + current_width // 2, location_y + current_height // 2) # bottom right
                    top_point = (location_x, location_y - current_height // 2) # top point
                    draw.polygon([top_point, left_up_point, right_down_point], fill=shape_color)

            if blur_radius != 0:
                    image = image.filter(ImageFilter.GaussianBlur(blur_radius))
            # Blend the current image with the accumulated image
            
            image = pil2tensor(image)
            if trailing != 1.0 and previous_output is not None:
                # Add the decayed previous output to the current frame
                image += trailing * previous_output
                image = image / image.max()
            previous_output = image
            image = image * intensity
            mask = image[:, :, :, 0]
            masks_list.append(mask)
            images_list.append(image)
        out_images = torch.cat(images_list, dim=0).cpu().float()
        out_masks = torch.cat(masks_list, dim=0)
        return (out_images, out_masks)
    
class CreateTextOnPath:
    
    RETURN_TYPES = ("IMAGE", "MASK", "MASK",)
    RETURN_NAMES = ("image", "mask", "mask_inverted",)
    FUNCTION = "createtextmask"
    CATEGORY = "KJNodes/masking/generate"
    DESCRIPTION = """
Creates a mask or batch of masks with the specified text.  
Locations are center locations.  
"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "coordinates": ("STRING", {"forceInput": True}),
                "text": ("STRING", {"default": 'text', "multiline": True}),
                "frame_width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
                "frame_height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
                "font": (folder_paths.get_filename_list("kjnodes_fonts"), ),
                "font_size": ("INT", {"default": 42}),
                 "alignment": (
                [   'left',
                    'center',
                    'right'
                ],
                {"default": 'center'}
                ),
                "text_color": ("STRING", {"default": 'white'}),
        },
        "optional": {
            "size_multiplier": ("FLOAT", {"default": [1.0], "forceInput": True}),
        }
    } 

    def createtextmask(self, coordinates, frame_width, frame_height, font, font_size, text, text_color, alignment, size_multiplier=[1.0]):
        coordinates = coordinates.replace("'", '"')
        coordinates = json.loads(coordinates)

        batch_size = len(coordinates)
        mask_list = []
        image_list = []
        color = text_color
        font_path = folder_paths.get_full_path("kjnodes_fonts", font)

        if len(size_multiplier) != batch_size:
            size_multiplier = size_multiplier * (batch_size // len(size_multiplier)) + size_multiplier[:batch_size % len(size_multiplier)]
        
        for i, coord in enumerate(coordinates):
            image = Image.new("RGB", (frame_width, frame_height), "black")
            draw = ImageDraw.Draw(image)
            lines = text.split('\n')  # Split the text into lines
            # Apply the size multiplier to the font size for this iteration
            current_font_size = int(font_size * size_multiplier[i])
            current_font = ImageFont.truetype(font_path, current_font_size)
            line_heights = [current_font.getbbox(line)[3] for line in lines]  # List of line heights
            total_text_height = sum(line_heights)  # Total height of text block

            # Calculate the starting Y position to center the block of text
            start_y = coord['y'] - total_text_height // 2
            for j, line in enumerate(lines):
                text_width, text_height = current_font.getbbox(line)[2], line_heights[j]
                if alignment == 'left':
                    location_x = coord['x']
                elif alignment == 'center':
                    location_x = int(coord['x'] - text_width // 2)
                elif alignment == 'right':
                    location_x = int(coord['x'] - text_width)
                
                location_y = int(start_y + sum(line_heights[:j]))
                text_position = (location_x, location_y)
                # Draw the text
                try:
                    draw.text(text_position, line, fill=color, font=current_font, features=['-liga'])
                except:
                    draw.text(text_position, line, fill=color, font=current_font)
            
            image = pil2tensor(image)
            non_black_pixels = (image > 0).any(dim=-1)
            mask = non_black_pixels.to(image.dtype)
            mask_list.append(mask)
            image_list.append(image)

        out_images = torch.cat(image_list, dim=0).cpu().float()
        out_masks = torch.cat(mask_list, dim=0)
        return (out_images, out_masks, 1.0 - out_masks,)

class CreateGradientFromCoords:
    
    RETURN_TYPES = ("IMAGE", )
    RETURN_NAMES = ("image", )
    FUNCTION = "generate"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Creates a gradient image from coordinates.    
"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "coordinates": ("STRING", {"forceInput": True}),
                "frame_width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
                "frame_height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
                "start_color": ("STRING", {"default": 'white'}),
                "end_color": ("STRING", {"default": 'black'}),
                "multiplier": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 100.0, "step": 0.01}),
        },
    } 
    
    def generate(self, coordinates, frame_width, frame_height, start_color, end_color, multiplier):
        # Parse the coordinates
        coordinates = json.loads(coordinates.replace("'", '"'))

        # Create an image
        image = Image.new("RGB", (frame_width, frame_height))
        draw = ImageDraw.Draw(image)

        # Extract start and end points for the gradient
        start_coord = coordinates[0]
        end_coord = coordinates[1]

        start_color = ImageColor.getrgb(start_color)
        end_color = ImageColor.getrgb(end_color)

        # Calculate the gradient direction (vector)
        gradient_direction = (end_coord['x'] - start_coord['x'], end_coord['y'] - start_coord['y'])
        gradient_length = (gradient_direction[0] ** 2 + gradient_direction[1] ** 2) ** 0.5

        # Iterate over each pixel in the image
        for y in range(frame_height):
            for x in range(frame_width):
                # Calculate the projection of the point on the gradient line
                point_vector = (x - start_coord['x'], y - start_coord['y'])
                projection = (point_vector[0] * gradient_direction[0] + point_vector[1] * gradient_direction[1]) / gradient_length
                projection = max(min(projection, gradient_length), 0)  # Clamp the projection value

                # Calculate the blend factor for the current pixel
                blend = projection * multiplier / gradient_length 

                # Determine the color of the current pixel
                color = (
                    int(start_color[0] + (end_color[0] - start_color[0]) * blend),
                    int(start_color[1] + (end_color[1] - start_color[1]) * blend),
                    int(start_color[2] + (end_color[2] - start_color[2]) * blend)
                )

                # Set the pixel color
                draw.point((x, y), fill=color)

        # Convert the PIL image to a tensor (assuming such a function exists in your context)
        image_tensor = pil2tensor(image)

        return (image_tensor,)

class GradientToFloat:
    
    RETURN_TYPES = ("FLOAT", "FLOAT",)
    RETURN_NAMES = ("float_x", "float_y", )
    FUNCTION = "sample"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Calculates list of floats from image.    
"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE", ),
                "steps": ("INT", {"default": 10, "min": 2, "max": 10000, "step": 1}),
        },
    } 
    
    def sample(self, image, steps):
        # Assuming image is a tensor with shape [B, H, W, C]
        B, H, W, C = image.shape

        # Sample along the width axis (W)
        w_intervals = torch.linspace(0, W - 1, steps=steps, dtype=torch.int64)
        # Assuming we're sampling from the first batch and the first channel
        w_sampled = image[0, :, w_intervals, 0]

        # Sample along the height axis (H)
        h_intervals = torch.linspace(0, H - 1, steps=steps, dtype=torch.int64)
        # Assuming we're sampling from the first batch and the first channel
        h_sampled = image[0, h_intervals, :, 0]

        # Taking the mean across the height for width sampling, and across the width for height sampling
        w_values = w_sampled.mean(dim=0).tolist()
        h_values = h_sampled.mean(dim=1).tolist()

        return (w_values, h_values)
    
class MaskOrImageToWeight:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "output_type": (
                [   
                    'list',
                    'pandas series',
                    'tensor',
                    'string'
                ],
                {
                "default": 'list'
                    }),
             },
            "optional": {
                "images": ("IMAGE",),
                "masks": ("MASK",),                
            },

        }
    RETURN_TYPES = ("FLOAT", "STRING",)
    FUNCTION = "execute"
    CATEGORY = "KJNodes/weights"
    DESCRIPTION = """
Gets the mean values from mask or image batch  
and returns that as the selected output type.   
"""

    def execute(self, output_type, images=None, masks=None):
        mean_values = []
        if masks is not None and images is None:
            for mask in masks:
                mean_values.append(mask.mean().item())
        elif masks is None and images is not None:
            for image in images:
                mean_values.append(image.mean().item())
        elif masks is not None and images is not None:
            raise Exception("MaskOrImageToWeight: Use either mask or image input only.")
                  
        # Convert mean_values to the specified output_type
        if output_type == 'list':
            out = mean_values
        elif output_type == 'pandas series':
            try:
                import pandas as pd
            except:
                raise Exception("MaskOrImageToWeight: pandas is not installed. Please install pandas to use this output_type")
            out = pd.Series(mean_values),
        elif output_type == 'tensor':
            out = torch.tensor(mean_values, dtype=torch.float32),
        return (out, [str(value) for value in mean_values],)
    
class WeightScheduleConvert:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "input_values": ("FLOAT", {"default": 0.0, "forceInput": True}),
                "output_type": (
                [   
                    'match_input',
                    'list',
                    'pandas series',
                    'tensor',
                ],
                {
                "default": 'list'
                    }),
                "invert": ("BOOLEAN", {"default": False}),
                "repeat": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}),
             },
             "optional": {
                "remap_to_frames": ("INT", {"default": 0}),
                "interpolation_curve": ("FLOAT", {"forceInput": True}),
                "remap_values": ("BOOLEAN", {"default": False}),
                "remap_min": ("FLOAT", {"default": 0.0, "min": -100000, "max": 100000.0, "step": 0.01}),
                "remap_max": ("FLOAT", {"default": 1.0, "min": -100000, "max": 100000.0, "step": 0.01}),
             },
             
        }
    RETURN_TYPES = ("FLOAT", "STRING", "INT",)
    FUNCTION = "execute"
    CATEGORY = "KJNodes/weights"
    DESCRIPTION = """
Converts different value lists/series to another type.  
"""

    def detect_input_type(self, input_values):
        import pandas as pd
        if isinstance(input_values, list):
            return 'list'
        elif isinstance(input_values, pd.Series):
            return 'pandas series'
        elif isinstance(input_values, torch.Tensor):
            return 'tensor'
        else:
            raise ValueError("Unsupported input type")

    def execute(self, input_values, output_type, invert, repeat, remap_to_frames=0, interpolation_curve=None, remap_min=0.0, remap_max=1.0, remap_values=False):
        import pandas as pd
        input_type = self.detect_input_type(input_values)

        if input_type == 'pandas series':
            float_values = input_values.tolist()
        elif input_type == 'tensor':
            float_values = input_values
        else:
            float_values = input_values

        if invert:
            float_values = [1 - value for value in float_values]

        if interpolation_curve is not None:
            interpolated_pattern = []
            orig_float_values = float_values
            for value in interpolation_curve:
                min_val = min(orig_float_values)
                max_val = max(orig_float_values)
                # Normalize the values to [0, 1]
                normalized_values = [(value - min_val) / (max_val - min_val) for value in orig_float_values]
                # Interpolate the normalized values to the new frame count
                remapped_float_values = np.interp(np.linspace(0, 1, int(remap_to_frames * value)), np.linspace(0, 1, len(normalized_values)), normalized_values).tolist()
                interpolated_pattern.extend(remapped_float_values)
            float_values = interpolated_pattern
        else:
            # Remap float_values to match target_frame_amount
            if remap_to_frames > 0 and remap_to_frames != len(float_values):
                min_val = min(float_values)
                max_val = max(float_values)
                # Normalize the values to [0, 1]
                normalized_values = [(value - min_val) / (max_val - min_val) for value in float_values]
                # Interpolate the normalized values to the new frame count
                float_values = np.interp(np.linspace(0, 1, remap_to_frames), np.linspace(0, 1, len(normalized_values)), normalized_values).tolist()
       
            float_values = float_values * repeat
            if remap_values:
                float_values = self.remap_values(float_values, remap_min, remap_max)

        if output_type == 'list':
            out = float_values,
        elif output_type == 'pandas series':
            out = pd.Series(float_values),
        elif output_type == 'tensor':
            if input_type == 'pandas series':
                out = torch.tensor(float_values.values, dtype=torch.float32),
            else:   
                out = torch.tensor(float_values, dtype=torch.float32),
        elif output_type == 'match_input':
            out = float_values,
        return (out, [str(value) for value in float_values], [int(value) for value in float_values])
    
    def remap_values(self, values, target_min, target_max):
        # Determine the current range
        current_min = min(values)
        current_max = max(values)
        current_range = current_max - current_min
        
        # Determine the target range
        target_range = target_max - target_min
        
        # Perform the linear interpolation for each value
        remapped_values = [(value - current_min) / current_range * target_range + target_min for value in values]
        
        return remapped_values
        

class FloatToMask:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "input_values": ("FLOAT", {"forceInput": True, "default": 0}),
                "width": ("INT", {"default": 100, "min": 1}),
                "height": ("INT", {"default": 100, "min": 1}),
            },
        }
    RETURN_TYPES = ("MASK",)
    FUNCTION = "execute"
    CATEGORY = "KJNodes/masking/generate"
    DESCRIPTION = """
Generates a batch of masks based on the input float values.
The batch size is determined by the length of the input float values.
Each mask is generated with the specified width and height.
"""

    def execute(self, input_values, width, height):
        import pandas as pd
        # Ensure input_values is a list
        if isinstance(input_values, (float, int)):
            input_values = [input_values]
        elif isinstance(input_values, pd.Series):
            input_values = input_values.tolist()
        elif isinstance(input_values, list) and all(isinstance(item, list) for item in input_values):
            input_values = [item for sublist in input_values for item in sublist]

        # Generate a batch of masks based on the input_values
        masks = []
        for value in input_values:
            # Assuming value is a float between 0 and 1 representing the mask's intensity
            mask = torch.ones((height, width), dtype=torch.float32) * value
            masks.append(mask)
        masks_out = torch.stack(masks, dim=0)
    
        return(masks_out,)
class WeightScheduleExtend:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "input_values_1": ("FLOAT", {"default": 0.0, "forceInput": True}),
                "input_values_2": ("FLOAT", {"default": 0.0, "forceInput": True}),
                "output_type": (
                [   
                    'match_input',
                    'list',
                    'pandas series',
                    'tensor',
                ],
                {
                "default": 'match_input'
                    }),
             },
             
        }
    RETURN_TYPES = ("FLOAT",)
    FUNCTION = "execute"
    CATEGORY = "KJNodes/weights"
    DESCRIPTION = """
Extends, and converts if needed, different value lists/series  
"""

    def detect_input_type(self, input_values):
        import pandas as pd
        if isinstance(input_values, list):
            return 'list'
        elif isinstance(input_values, pd.Series):
            return 'pandas series'
        elif isinstance(input_values, torch.Tensor):
            return 'tensor'
        else:
            raise ValueError("Unsupported input type")

    def execute(self, input_values_1, input_values_2, output_type):
        import pandas as pd
        input_type_1 = self.detect_input_type(input_values_1)
        input_type_2 = self.detect_input_type(input_values_2)
        # Convert input_values_2 to the same format as input_values_1 if they do not match
        if not input_type_1 == input_type_2:
            print("Converting input_values_2 to the same format as input_values_1")
            if input_type_1 == 'pandas series':
                # Convert input_values_2 to a pandas Series
                float_values_2 = pd.Series(input_values_2)
            elif input_type_1 == 'tensor':
                # Convert input_values_2 to a tensor
                float_values_2 = torch.tensor(input_values_2, dtype=torch.float32)
        else:
            print("Input types match, no conversion needed")
            # If the types match, no conversion is needed
            float_values_2 = input_values_2
     
        float_values = input_values_1 + float_values_2
 
        if output_type == 'list':
            return float_values,
        elif output_type == 'pandas series':
            return pd.Series(float_values),
        elif output_type == 'tensor':
            if input_type_1 == 'pandas series':
                return torch.tensor(float_values.values, dtype=torch.float32),
            else:
                return torch.tensor(float_values, dtype=torch.float32),
        elif output_type == 'match_input':
            return float_values,
        else:
            raise ValueError(f"Unsupported output_type: {output_type}")
        
class FloatToSigmas:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {
                     "float_list": ("FLOAT", {"default": 0.0, "forceInput": True}),
                     }
                }
    RETURN_TYPES = ("SIGMAS",)
    RETURN_NAMES = ("SIGMAS",)
    CATEGORY = "KJNodes/noise"
    FUNCTION = "customsigmas"
    DESCRIPTION = """
Creates a sigmas tensor from list of float values.  

"""
    def customsigmas(self, float_list):
        return torch.tensor(float_list, dtype=torch.float32),

class SigmasToFloat:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {
                     "sigmas": ("SIGMAS",),
                     }
                }
    RETURN_TYPES = ("FLOAT",)
    RETURN_NAMES = ("float",)
    CATEGORY = "KJNodes/noise"
    FUNCTION = "customsigmas"
    DESCRIPTION = """
Creates a float list from sigmas tensors.  

"""
    def customsigmas(self, sigmas):
        return sigmas.tolist(),

class GLIGENTextBoxApplyBatchCoords:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "latents": ("LATENT", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "coordinates": ("STRING", {"forceInput": True}),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 128, "min": 8, "max": 4096, "step": 8}),
                              "height": ("INT", {"default": 128, "min": 8, "max": 4096, "step": 8}),
                            },
                "optional": {"size_multiplier": ("FLOAT", {"default": [1.0], "forceInput": True})},
                }
    RETURN_TYPES = ("CONDITIONING", "IMAGE", )
    RETURN_NAMES = ("conditioning", "coord_preview", )
    FUNCTION = "append"
    CATEGORY = "KJNodes/experimental"
    DESCRIPTION = """
This node allows scheduling GLIGEN text box positions in a batch,  
to be used with AnimateDiff-Evolved. Intended to pair with the  
Spline Editor -node.  

GLIGEN model can be downloaded through the Manage's "Install Models" menu.  
Or directly from here:  
https://huggingface.co/comfyanonymous/GLIGEN_pruned_safetensors/tree/main  
  
Inputs:  
- **latents** input is used to calculate batch size  
- **clip** is your standard text encoder, use same as for the main prompt  
- **gligen_textbox_model** connects to GLIGEN Loader  
- **coordinates** takes a json string of points, directly compatible  
with the spline editor node.
- **text** is the part of the prompt to set position for  
- **width** and **height** are the size of the GLIGEN bounding box  
  
Outputs:
- **conditioning** goes between to clip text encode and the sampler  
- **coord_preview** is an optional preview of the coordinates and  
bounding boxes.

"""

    def append(self, latents, coordinates, conditioning_to, clip, gligen_textbox_model, text, width, height, size_multiplier=[1.0]):
        coordinates = json.loads(coordinates.replace("'", '"'))
        coordinates = [(coord['x'], coord['y']) for coord in coordinates]

        batch_size = sum(tensor.size(0) for tensor in latents.values())
        if len(coordinates) != batch_size:
            print("GLIGENTextBoxApplyBatchCoords WARNING: The number of coordinates does not match the number of latents")

        c = []
        _, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)

        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            
            position_params_batch = [[] for _ in range(batch_size)]  # Initialize a list of empty lists for each batch item
            if len(size_multiplier) != batch_size:
                size_multiplier = size_multiplier * (batch_size // len(size_multiplier)) + size_multiplier[:batch_size % len(size_multiplier)]

            for i in range(batch_size):
                x_position, y_position = coordinates[i]
                position_param = (cond_pooled, int((height // 8) * size_multiplier[i]), int((width // 8) * size_multiplier[i]), (y_position - height // 2) // 8, (x_position - width // 2) // 8)
                position_params_batch[i].append(position_param)  # Append position_param to the correct sublist

            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]
            else:
                prev = [[] for _ in range(batch_size)]
            # Concatenate prev and position_params_batch, ensuring both are lists of lists
            # and each sublist corresponds to a batch item
            combined_position_params = [prev_item + batch_item for prev_item, batch_item in zip(prev, position_params_batch)]
            n[1]['gligen'] = ("position_batched", gligen_textbox_model, combined_position_params)
            c.append(n)

        image_height = latents['samples'].shape[-2] * 8
        image_width = latents['samples'].shape[-1] * 8
        plot_image_tensor = plot_coordinates_to_tensor(coordinates, image_height, image_width, height, width, size_multiplier, text)
        
        return (c, plot_image_tensor,)
    
class CreateInstanceDiffusionTracking:
    
    RETURN_TYPES = ("TRACKING", "STRING", "INT", "INT", "INT", "INT",)
    RETURN_NAMES = ("tracking", "prompt", "width", "height", "bbox_width", "bbox_height",)
    FUNCTION = "tracking"
    CATEGORY = "KJNodes/InstanceDiffusion"
    DESCRIPTION = """
Creates tracking data to be used with InstanceDiffusion:  
https://github.com/logtd/ComfyUI-InstanceDiffusion  
  
InstanceDiffusion prompt format:  
"class_id.class_name": "prompt",  
for example:  
"1.head": "((head))",  
"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "coordinates": ("STRING", {"forceInput": True}),
                "width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
                "height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
                "bbox_width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
                "bbox_height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
                "class_name": ("STRING", {"default": "class_name"}),
                "class_id": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
                "prompt": ("STRING", {"default": "prompt", "multiline": True}),
        },
        "optional": {
            "size_multiplier": ("FLOAT", {"default": [1.0], "forceInput": True}),
            "fit_in_frame": ("BOOLEAN", {"default": True}),
        }
    } 

    def tracking(self, coordinates, class_name, class_id, width, height, bbox_width, bbox_height, prompt, size_multiplier=[1.0], fit_in_frame=True):
        # Define the number of images in the batch
        coordinates = coordinates.replace("'", '"')
        coordinates = json.loads(coordinates)

        tracked = {}
        tracked[class_name] = {}
        batch_size = len(coordinates)
        # Initialize a list to hold the coordinates for the current ID
        id_coordinates = []
        if not size_multiplier or len(size_multiplier) != batch_size:
            size_multiplier = [0] * batch_size
        else:
            size_multiplier = size_multiplier * (batch_size // len(size_multiplier)) + size_multiplier[:batch_size % len(size_multiplier)]
        for i, coord in enumerate(coordinates):
            x = coord['x']
            y = coord['y']
            adjusted_bbox_width = bbox_width * size_multiplier[i]
            adjusted_bbox_height = bbox_height * size_multiplier[i]
            # Calculate the top left and bottom right coordinates
            top_left_x = x - adjusted_bbox_width // 2
            top_left_y = y - adjusted_bbox_height // 2
            bottom_right_x = x + adjusted_bbox_width // 2
            bottom_right_y = y + adjusted_bbox_height // 2

            if fit_in_frame:
                # Clip the coordinates to the frame boundaries
                top_left_x = max(0, top_left_x)
                top_left_y = max(0, top_left_y)
                bottom_right_x = min(width, bottom_right_x)
                bottom_right_y = min(height, bottom_right_y)
                # Ensure width and height are positive
                adjusted_bbox_width = max(1, bottom_right_x - top_left_x)
                adjusted_bbox_height = max(1, bottom_right_y - top_left_y)

                # Update the coordinates with the new width and height
                bottom_right_x = top_left_x + adjusted_bbox_width
                bottom_right_y = top_left_y + adjusted_bbox_height

            # Append the top left and bottom right coordinates to the list for the current ID
            id_coordinates.append([top_left_x, top_left_y, bottom_right_x, bottom_right_y, width, height])
        
        class_id = int(class_id)
        # Assign the list of coordinates to the specified ID within the class_id dictionary
        tracked[class_name][class_id] = id_coordinates

        prompt_string = ""
        for class_name, class_data in tracked.items():
            for class_id in class_data.keys():
                class_id_str = str(class_id)
                # Use the incoming prompt for each class name and ID
                prompt_string += f'"{class_id_str}.{class_name}": "({prompt})",\n'

        # Remove the last comma and newline
        prompt_string = prompt_string.rstrip(",\n")

        return (tracked, prompt_string, width, height, bbox_width, bbox_height)

class AppendInstanceDiffusionTracking:
    
    RETURN_TYPES = ("TRACKING", "STRING",)
    RETURN_NAMES = ("tracking", "prompt",)
    FUNCTION = "append"
    CATEGORY = "KJNodes/InstanceDiffusion"
    DESCRIPTION = """
Appends tracking data to be used with InstanceDiffusion:  
https://github.com/logtd/ComfyUI-InstanceDiffusion  

"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "tracking_1": ("TRACKING", {"forceInput": True}),
                "tracking_2": ("TRACKING", {"forceInput": True}),
        },
        "optional": {
            "prompt_1": ("STRING", {"default": "", "forceInput": True}),
            "prompt_2": ("STRING", {"default": "", "forceInput": True}),
        }
    } 

    def append(self, tracking_1, tracking_2, prompt_1="", prompt_2=""):
        tracking_copy = tracking_1.copy()
        # Check for existing class names and class IDs, and raise an error if they exist
        for class_name, class_data in tracking_2.items():
            if class_name not in tracking_copy:
                tracking_copy[class_name] = class_data
            else:
                # If the class name exists, merge the class data from tracking_2 into tracking_copy
                # This will add new class IDs under the same class name without raising an error
                tracking_copy[class_name].update(class_data)
        prompt_string = prompt_1 + "," + prompt_2
        return (tracking_copy, prompt_string)
        
class InterpolateCoords:
    
    RETURN_TYPES = ("STRING",)
    RETURN_NAMES = ("coordinates",)
    FUNCTION = "interpolate"
    CATEGORY = "KJNodes/experimental"
    DESCRIPTION = """
Interpolates coordinates based on a curve.   
"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "coordinates": ("STRING", {"forceInput": True}),
                "interpolation_curve": ("FLOAT", {"forceInput": True}),
                
        },
    } 

    def interpolate(self, coordinates, interpolation_curve):
        # Parse the JSON string to get the list of coordinates
        coordinates = json.loads(coordinates.replace("'", '"'))

        # Convert the list of dictionaries to a list of (x, y) tuples for easier processing
        coordinates = [(coord['x'], coord['y']) for coord in coordinates]

        # Calculate the total length of the original path
        path_length = sum(np.linalg.norm(np.array(coordinates[i]) - np.array(coordinates[i-1])) 
                        for i in range(1, len(coordinates)))

        # Initialize variables for interpolation
        interpolated_coords = []
        current_length = 0
        current_index = 0

        # Iterate over the normalized curve
        for normalized_length in interpolation_curve:
            target_length = normalized_length * path_length # Convert to the original scale
            while current_index < len(coordinates) - 1:
                segment_start, segment_end = np.array(coordinates[current_index]), np.array(coordinates[current_index + 1])
                segment_length = np.linalg.norm(segment_end - segment_start)
                if current_length + segment_length >= target_length:
                    break
                current_length += segment_length
                current_index += 1

            # Interpolate between the last two points
            if current_index < len(coordinates) - 1:
                p1, p2 = np.array(coordinates[current_index]), np.array(coordinates[current_index + 1])
                segment_length = np.linalg.norm(p2 - p1)
                if segment_length > 0:
                    t = (target_length - current_length) / segment_length
                    interpolated_point = p1 + t * (p2 - p1)
                    interpolated_coords.append(interpolated_point.tolist())
                else:
                    interpolated_coords.append(p1.tolist())
            else:
                # If the target_length is at or beyond the end of the path, add the last coordinate
                interpolated_coords.append(coordinates[-1])

        # Convert back to string format if necessary
        interpolated_coords_str = "[" + ", ".join([f"{{'x': {round(coord[0])}, 'y': {round(coord[1])}}}" for coord in interpolated_coords]) + "]"
        print(interpolated_coords_str)

        return (interpolated_coords_str,)
    
class DrawInstanceDiffusionTracking:
    
    RETURN_TYPES = ("IMAGE",)
    RETURN_NAMES = ("image", )
    FUNCTION = "draw"
    CATEGORY = "KJNodes/InstanceDiffusion"
    DESCRIPTION = """
Draws the tracking data from  
CreateInstanceDiffusionTracking -node.

"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE", ),
                "tracking": ("TRACKING", {"forceInput": True}),
                "box_line_width": ("INT", {"default": 2, "min": 1, "max": 10, "step": 1}),
                "draw_text": ("BOOLEAN", {"default": True}),
                "font": (folder_paths.get_filename_list("kjnodes_fonts"), ),
                "font_size": ("INT", {"default": 20}),
        },
    } 

    def draw(self, image, tracking, box_line_width, draw_text, font, font_size):
        import matplotlib.cm as cm

        modified_images = []
        
        colormap = cm.get_cmap('rainbow', len(tracking))
        if draw_text:
            font_path = folder_paths.get_full_path("kjnodes_fonts", font)
            font = ImageFont.truetype(font_path, font_size)

        # Iterate over each image in the batch
        for i in range(image.shape[0]):
            # Extract the current image and convert it to a PIL image
            current_image = image[i, :, :, :].permute(2, 0, 1)
            pil_image = transforms.ToPILImage()(current_image)
            
            draw = ImageDraw.Draw(pil_image)
            
            # Iterate over the bounding boxes for the current image
            for j, (class_name, class_data) in enumerate(tracking.items()):
                for class_id, bbox_list in class_data.items():
                    # Check if the current index is within the bounds of the bbox_list
                    if i < len(bbox_list):
                        bbox = bbox_list[i]
                        # Ensure bbox is a list or tuple before unpacking
                        if isinstance(bbox, (list, tuple)):
                            x1, y1, x2, y2, _, _ = bbox
                            # Convert coordinates to integers
                            x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
                            # Generate a color from the rainbow colormap
                            color = tuple(int(255 * x) for x in colormap(j / len(tracking)))[:3]
                            # Draw the bounding box on the image with the generated color
                            draw.rectangle([x1, y1, x2, y2], outline=color, width=box_line_width)
                            if draw_text:
                                # Draw the class name and ID as text above the box with the generated color
                                text = f"{class_id}.{class_name}"
                                # Calculate the width and height of the text
                                _, _, text_width, text_height = draw.textbbox((0, 0), text=text, font=font)
                                # Position the text above the top-left corner of the box
                                text_position = (x1, y1 - text_height)
                                draw.text(text_position, text, fill=color, font=font)
                        else:
                            print(f"Unexpected data type for bbox: {type(bbox)}")
            
            # Convert the drawn image back to a torch tensor and adjust back to (H, W, C)
            modified_image_tensor = transforms.ToTensor()(pil_image).permute(1, 2, 0)
            modified_images.append(modified_image_tensor)
        
        # Stack the modified images back into a batch
        image_tensor_batch = torch.stack(modified_images).cpu().float()
        
        return image_tensor_batch,

class PointsEditor:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "points_store": ("STRING", {"multiline": False}),
                "coordinates": ("STRING", {"multiline": False}),
                "neg_coordinates": ("STRING", {"multiline": False}),
                "bbox_store": ("STRING", {"multiline": False}),
                "bboxes": ("STRING", {"multiline": False}),
                "bbox_format": (
                [   
                    'xyxy',
                    'xywh',
                ],
                ),
                "width": ("INT", {"default": 512, "min": 8, "max": 4096, "step": 8}),
                "height": ("INT", {"default": 512, "min": 8, "max": 4096, "step": 8}),
                "normalize": ("BOOLEAN", {"default": False}),
            },
            "optional": {
                "bg_image": ("IMAGE", ),
            },
        }

    RETURN_TYPES = ("STRING", "STRING", "BBOX", "MASK", "IMAGE")
    RETURN_NAMES = ("positive_coords", "negative_coords", "bbox", "bbox_mask", "cropped_image")
    FUNCTION = "pointdata"
    CATEGORY = "KJNodes/experimental"
    DESCRIPTION = """
# WORK IN PROGRESS  
Do not count on this as part of your workflow yet,  
probably contains lots of bugs and stability is not  
guaranteed!!  
  
## Graphical editor to create coordinates

**Shift + click** to add a positive (green) point.
**Shift + right click** to add a negative (red) point.
**Ctrl + click** to draw a box.  
**Right click on a point** to delete it.    
Note that you can't delete from start/end of the points array.  
  
To add an image select the node and copy/paste or drag in the image.  
Or from the bg_image input on queue (first frame of the batch).  

**THE IMAGE IS SAVED TO THE NODE AND WORKFLOW METADATA**  
you can clear the image from the context menu by right clicking on the canvas  

"""

    def pointdata(self, points_store, bbox_store, width, height, coordinates, neg_coordinates, normalize, bboxes, bbox_format="xyxy", bg_image=None):
        coordinates = json.loads(coordinates)
        pos_coordinates = []
        for coord in coordinates:
            coord['x'] = int(round(coord['x']))
            coord['y'] = int(round(coord['y']))
            if normalize:
                norm_x = coord['x'] / width
                norm_y = coord['y'] / height
                pos_coordinates.append({'x': norm_x, 'y': norm_y})
            else:
                pos_coordinates.append({'x': coord['x'], 'y': coord['y']})

        if neg_coordinates:
            coordinates = json.loads(neg_coordinates)
            neg_coordinates = []
            for coord in coordinates:
                coord['x'] = int(round(coord['x']))
                coord['y'] = int(round(coord['y']))
                if normalize:
                    norm_x = coord['x'] / width
                    norm_y = coord['y'] / height
                    neg_coordinates.append({'x': norm_x, 'y': norm_y})
                else:
                    neg_coordinates.append({'x': coord['x'], 'y': coord['y']})

        # Create a blank mask
        mask = np.zeros((height, width), dtype=np.uint8)
        bboxes = json.loads(bboxes)
        print(bboxes)
        valid_bboxes = []
        for bbox in bboxes:
            if (bbox.get("startX") is None or
                bbox.get("startY") is None or
                bbox.get("endX") is None or
                bbox.get("endY") is None):
                continue  # Skip this bounding box if any value is None
            else:                
                # Ensure that endX and endY are greater than startX and startY
                x_min = min(int(bbox["startX"]), int(bbox["endX"]))
                y_min = min(int(bbox["startY"]), int(bbox["endY"]))
                x_max = max(int(bbox["startX"]), int(bbox["endX"]))
                y_max = max(int(bbox["startY"]), int(bbox["endY"]))
                
                valid_bboxes.append((x_min, y_min, x_max, y_max))

            bboxes_xyxy = []
            for bbox in valid_bboxes:
                x_min, y_min, x_max, y_max = bbox
                bboxes_xyxy.append((x_min, y_min, x_max, y_max))
                mask[y_min:y_max, x_min:x_max] = 1  # Fill the bounding box area with 1s

            if bbox_format == "xywh":
                bboxes_xywh = []
                for bbox in valid_bboxes:
                    x_min, y_min, x_max, y_max = bbox
                    width = x_max - x_min
                    height = y_max - y_min
                    bboxes_xywh.append((x_min, y_min, width, height))
                bboxes = bboxes_xywh
            else:
                bboxes = bboxes_xyxy           

        mask_tensor = torch.from_numpy(mask)
        mask_tensor = mask_tensor.unsqueeze(0).float().cpu()

        if bg_image is not None and len(valid_bboxes) > 0:
            x_min, y_min, x_max, y_max = bboxes[0]
            cropped_image = bg_image[:, y_min:y_max, x_min:x_max, :]

        elif bg_image is not None:
            cropped_image = bg_image

        if bg_image is None:
            return (json.dumps(pos_coordinates), json.dumps(neg_coordinates), bboxes, mask_tensor)
        else:
            transform = transforms.ToPILImage()
            image = transform(bg_image[0].permute(2, 0, 1))
            buffered = io.BytesIO()
            image.save(buffered, format="JPEG", quality=75)

            # Step 3: Encode the image bytes to a Base64 string
            img_bytes = buffered.getvalue()
            img_base64 = base64.b64encode(img_bytes).decode('utf-8')
        
            return {
                "ui": {"bg_image": [img_base64]}, 
                "result": (json.dumps(pos_coordinates), json.dumps(neg_coordinates), bboxes, mask_tensor, cropped_image)
            }