File size: 3,117 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
"""Generates psychedelic color textures in the spirit of Blender's magic texture shader using Python/Numpy

https://github.com/cheind/magic-texture
"""
from typing import Tuple, Optional
import numpy as np


def coordinate_grid(shape: Tuple[int, int], dtype=np.float32):
    """Returns a three-dimensional coordinate grid of given shape for use in `magic`."""
    x = np.linspace(-1, 1, shape[1], endpoint=True, dtype=dtype)
    y = np.linspace(-1, 1, shape[0], endpoint=True, dtype=dtype)
    X, Y = np.meshgrid(x, y)
    XYZ = np.stack((X, Y, np.ones_like(X)), -1)
    return XYZ


def random_transform(coords: np.ndarray, rng: np.random.Generator = None):
    """Returns randomly transformed coordinates"""
    H, W = coords.shape[:2]
    rng = rng or np.random.default_rng()
    m = rng.uniform(-1.0, 1.0, size=(3, 3)).astype(coords.dtype)
    return (coords.reshape(-1, 3) @ m.T).reshape(H, W, 3)


def magic(
    coords: np.ndarray,
    depth: Optional[int] = None,
    distortion: Optional[int] = None,
    rng: np.random.Generator = None,
):
    """Returns color magic color texture.

    The implementation is based on Blender's (https://www.blender.org/) magic
    texture shader. The following adaptions have been made:
     - we exchange the nested if-cascade by a probabilistic iterative approach

    Kwargs
    ------
    coords: HxWx3 array
        Coordinates transformed into colors by this method. See
        `magictex.coordinate_grid` to generate the default.
    depth: int (optional)
        Number of transformations applied. Higher numbers lead to more
        nested patterns. If not specified, randomly sampled.
    distortion: float (optional)
        Distortion of patterns. Larger values indicate more distortion,
        lower values tend to generate smoother patterns. If not specified,
        randomly sampled.
    rng: np.random.Generator
        Optional random generator to draw samples from.

    Returns
    -------
    colors: HxWx3 array
        Three channel color image in range [0,1]
    """
    rng = rng or np.random.default_rng()
    if distortion is None:
        distortion = rng.uniform(1, 4)
    if depth is None:
        depth = rng.integers(1, 5)

    H, W = coords.shape[:2]
    XYZ = coords
    x = np.sin((XYZ[..., 0] + XYZ[..., 1] + XYZ[..., 2]) * distortion)
    y = np.cos((-XYZ[..., 0] + XYZ[..., 1] - XYZ[..., 2]) * distortion)
    z = -np.cos((-XYZ[..., 0] - XYZ[..., 1] + XYZ[..., 2]) * distortion)

    if depth > 0:
        x *= distortion
        y *= distortion
        z *= distortion
        y = -np.cos(x - y + z)
        y *= distortion

    xyz = [x, y, z]
    fns = [np.cos, np.sin]
    for _ in range(1, depth):
        axis = rng.choice(3)
        fn = fns[rng.choice(2)]
        signs = rng.binomial(n=1, p=0.5, size=4) * 2 - 1

        xyz[axis] = signs[-1] * fn(
            signs[0] * xyz[0] + signs[1] * xyz[1] + signs[2] * xyz[2]
        )
        xyz[axis] *= distortion

    x, y, z = xyz
    x /= 2 * distortion
    y /= 2 * distortion
    z /= 2 * distortion
    c = 0.5 - np.stack((x, y, z), -1)
    np.clip(c, 0, 1.0)
    return c