File size: 36,452 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
import os
import comfy.samplers
import comfy.sample
import torch
from nodes import common_ksampler, CLIPTextEncode
from comfy.utils import ProgressBar
from .utils import expand_mask, FONTS_DIR, parse_string_to_list
import torchvision.transforms.v2 as T
import torch.nn.functional as F
import logging
import folder_paths

# From https://github.com/BlenderNeko/ComfyUI_Noise/
def slerp(val, low, high):
    dims = low.shape

    low = low.reshape(dims[0], -1)
    high = high.reshape(dims[0], -1)

    low_norm = low/torch.norm(low, dim=1, keepdim=True)
    high_norm = high/torch.norm(high, dim=1, keepdim=True)

    low_norm[low_norm != low_norm] = 0.0
    high_norm[high_norm != high_norm] = 0.0

    omega = torch.acos((low_norm*high_norm).sum(1))
    so = torch.sin(omega)
    res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high

    return res.reshape(dims)

class KSamplerVariationsWithNoise:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "model": ("MODEL", ),
                    "latent_image": ("LATENT", ),
                    "main_seed": ("INT:seed", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "variation_strength": ("FLOAT", {"default": 0.17, "min": 0.0, "max": 1.0, "step":0.01, "round": 0.01}),
                    #"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    #"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    #"return_with_leftover_noise": (["disable", "enable"], ),
                    "variation_seed": ("INT:seed", {"default": 12345, "min": 0, "max": 0xffffffffffffffff}),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step":0.01, "round": 0.01}),
                }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "execute"
    CATEGORY = "essentials/sampling"

    def prepare_mask(self, mask, shape):
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear")
        mask = mask.expand((-1,shape[1],-1,-1))
        if mask.shape[0] < shape[0]:
            mask = mask.repeat((shape[0] -1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]]
        return mask

    def execute(self, model, latent_image, main_seed, steps, cfg, sampler_name, scheduler, positive, negative, variation_strength, variation_seed, denoise):
        if main_seed == variation_seed:
            variation_seed += 1

        end_at_step = steps #min(steps, end_at_step)
        start_at_step = round(end_at_step - end_at_step * denoise)

        force_full_denoise = True
        disable_noise = True

        device = comfy.model_management.get_torch_device()

        # Generate base noise
        batch_size, _, height, width = latent_image["samples"].shape
        generator = torch.manual_seed(main_seed)
        base_noise = torch.randn((1, 4, height, width), dtype=torch.float32, device="cpu", generator=generator).repeat(batch_size, 1, 1, 1).cpu()

        # Generate variation noise
        generator = torch.manual_seed(variation_seed)
        variation_noise = torch.randn((batch_size, 4, height, width), dtype=torch.float32, device="cpu", generator=generator).cpu()

        slerp_noise = slerp(variation_strength, base_noise, variation_noise)

        # Calculate sigma
        comfy.model_management.load_model_gpu(model)
        sampler = comfy.samplers.KSampler(model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=1.0, model_options=model.model_options)
        sigmas = sampler.sigmas
        sigma = sigmas[start_at_step] - sigmas[end_at_step]
        sigma /= model.model.latent_format.scale_factor
        sigma = sigma.detach().cpu().item()

        work_latent = latent_image.copy()
        work_latent["samples"] = latent_image["samples"].clone() + slerp_noise * sigma

        # if there's a mask we need to expand it to avoid artifacts, 5 pixels should be enough
        if "noise_mask" in latent_image:
            noise_mask = self.prepare_mask(latent_image["noise_mask"], latent_image['samples'].shape)
            work_latent["samples"] = noise_mask * work_latent["samples"] + (1-noise_mask) * latent_image["samples"]
            work_latent['noise_mask'] = expand_mask(latent_image["noise_mask"].clone(), 5, True)

        return common_ksampler(model, main_seed, steps, cfg, sampler_name, scheduler, positive, negative, work_latent, denoise=1.0, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)


class KSamplerVariationsStochastic:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":{
                    "model": ("MODEL",),
                    "latent_image": ("LATENT", ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 25, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
                    "sampler": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "variation_seed": ("INT:seed", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "variation_strength": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step":0.05, "round": 0.01}),
                    #"variation_sampler": (comfy.samplers.KSampler.SAMPLERS, ),
                    "cfg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step":0.05, "round": 0.01}),
                }}

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "execute"
    CATEGORY = "essentials/sampling"

    def execute(self, model, latent_image, noise_seed, steps, cfg, sampler, scheduler, positive, negative, variation_seed, variation_strength, cfg_scale, variation_sampler="dpmpp_2m_sde"):
        # Stage 1: composition sampler
        force_full_denoise = False # return with leftover noise = "enable"
        disable_noise = False # add noise = "enable"

        end_at_step = max(int(steps * (1-variation_strength)), 1)
        start_at_step = 0

        work_latent = latent_image.copy()
        batch_size = work_latent["samples"].shape[0]
        work_latent["samples"] = work_latent["samples"][0].unsqueeze(0)

        stage1 = common_ksampler(model, noise_seed, steps, cfg, sampler, scheduler, positive, negative, work_latent, denoise=1.0, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)[0]

        if batch_size > 1:
            stage1["samples"] = stage1["samples"].clone().repeat(batch_size, 1, 1, 1)

        # Stage 2: variation sampler
        force_full_denoise = True
        disable_noise = True
        cfg = max(cfg * cfg_scale, 1.0)
        start_at_step = end_at_step
        end_at_step = steps

        return common_ksampler(model, variation_seed, steps, cfg, variation_sampler, scheduler, positive, negative, stage1, denoise=1.0, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)

class InjectLatentNoise:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "latent": ("LATENT", ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "noise_strength": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step":0.01, "round": 0.01}),
                    "normalize": (["false", "true"], {"default": "false"}),
                },
                "optional": {
                    "mask": ("MASK", ),
                }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "execute"
    CATEGORY = "essentials/sampling"

    def execute(self, latent, noise_seed, noise_strength, normalize="false", mask=None):
        torch.manual_seed(noise_seed)
        noise_latent = latent.copy()
        original_samples = noise_latent["samples"].clone()
        random_noise = torch.randn_like(original_samples)

        if normalize == "true":
            mean = original_samples.mean()
            std = original_samples.std()
            random_noise = random_noise * std + mean

        random_noise = original_samples + random_noise * noise_strength

        if mask is not None:
            mask = F.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(random_noise.shape[2], random_noise.shape[3]), mode="bilinear")
            mask = mask.expand((-1,random_noise.shape[1],-1,-1)).clamp(0.0, 1.0)
            if mask.shape[0] < random_noise.shape[0]:
                mask = mask.repeat((random_noise.shape[0] -1) // mask.shape[0] + 1, 1, 1, 1)[:random_noise.shape[0]]
            elif mask.shape[0] > random_noise.shape[0]:
                mask = mask[:random_noise.shape[0]]
            random_noise = mask * random_noise + (1-mask) * original_samples

        noise_latent["samples"] = random_noise

        return (noise_latent, )

class TextEncodeForSamplerParams:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "text": ("STRING", {"multiline": True, "dynamicPrompts": True, "default": "Separate prompts with at least three dashes\n---\nLike so"}),
                "clip": ("CLIP", )
            }}

    RETURN_TYPES = ("CONDITIONING", )
    FUNCTION = "execute"
    CATEGORY = "essentials/sampling"

    def execute(self, text, clip):
        import re
        output_text = []
        output_encoded = []
        text = re.sub(r'[-*=~]{4,}\n', '---\n', text)
        text = text.split("---\n")

        for t in text:
            t = t.strip()
            if t:
                output_text.append(t)
                output_encoded.append(CLIPTextEncode().encode(clip, t)[0])

        #if len(output_encoded) == 1:
        #    output = output_encoded[0]
        #else:
        output = {"text": output_text, "encoded": output_encoded}

        return (output, )

class SamplerSelectHelper:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            **{s: ("BOOLEAN", { "default": False }) for s in comfy.samplers.KSampler.SAMPLERS},
        }}

    RETURN_TYPES = ("STRING", )
    FUNCTION = "execute"
    CATEGORY = "essentials/sampling"

    def execute(self, **values):
        values = [v for v in values if values[v]]
        values = ", ".join(values)

        return (values, )

class SchedulerSelectHelper:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            **{s: ("BOOLEAN", { "default": False }) for s in comfy.samplers.KSampler.SCHEDULERS},
        }}

    RETURN_TYPES = ("STRING", )
    FUNCTION = "execute"
    CATEGORY = "essentials/sampling"

    def execute(self, **values):
        values = [v for v in values if values[v]]
        values = ", ".join(values)

        return (values, )

class LorasForFluxParams:
    @classmethod
    def INPUT_TYPES(s):
        optional_loras = ['none'] + folder_paths.get_filename_list("loras")
        return {
            "required": {
                "lora_1": (folder_paths.get_filename_list("loras"), {"tooltip": "The name of the LoRA."}),
                "strength_model_1": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "1.0" }),
            },
            #"optional": {
            #    "lora_2": (optional_loras, ),
            #    "strength_lora_2": ("STRING", { "multiline": False, "dynamicPrompts": False }),
            #    "lora_3": (optional_loras, ),
            #    "strength_lora_3": ("STRING", { "multiline": False, "dynamicPrompts": False }),
            #    "lora_4": (optional_loras, ),
            #    "strength_lora_4": ("STRING", { "multiline": False, "dynamicPrompts": False }),
            #}
        }

    RETURN_TYPES = ("LORA_PARAMS", )
    FUNCTION = "execute"
    CATEGORY = "essentials/sampling"

    def execute(self, lora_1, strength_model_1, lora_2="none", strength_lora_2="", lora_3="none", strength_lora_3="", lora_4="none", strength_lora_4=""):
        output = { "loras": [], "strengths": [] }
        output["loras"].append(lora_1)
        output["strengths"].append(parse_string_to_list(strength_model_1))

        if lora_2 != "none":
            output["loras"].append(lora_2)
            if strength_lora_2 == "":
                strength_lora_2 = "1.0"
            output["strengths"].append(parse_string_to_list(strength_lora_2))
        if lora_3 != "none":
            output["loras"].append(lora_3)
            if strength_lora_3 == "":
                strength_lora_3 = "1.0"
            output["strengths"].append(parse_string_to_list(strength_lora_3))
        if lora_4 != "none":
            output["loras"].append(lora_4)
            if strength_lora_4 == "":
                strength_lora_4 = "1.0"
            output["strengths"].append(parse_string_to_list(strength_lora_4))

        return (output,)


class FluxSamplerParams:
    def __init__(self):
        self.loraloader = None
        self.lora = (None, None)

    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "model": ("MODEL", ),
                    "conditioning": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),

                    "seed": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "?" }),
                    "sampler": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "euler" }),
                    "scheduler": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "simple" }),
                    "steps": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "20" }),
                    "guidance": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "3.5" }),
                    "max_shift": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "" }),
                    "base_shift": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "" }),
                    "denoise": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "1.0" }),
                },
                "optional": {
                    "loras": ("LORA_PARAMS",),
                }}

    RETURN_TYPES = ("LATENT","SAMPLER_PARAMS")
    RETURN_NAMES = ("latent", "params")
    FUNCTION = "execute"
    CATEGORY = "essentials/sampling"

    def execute(self, model, conditioning, latent_image, seed, sampler, scheduler, steps, guidance, max_shift, base_shift, denoise, loras=None):
        import random
        import time
        from comfy_extras.nodes_custom_sampler import Noise_RandomNoise, BasicScheduler, BasicGuider, SamplerCustomAdvanced
        from comfy_extras.nodes_latent import LatentBatch
        from comfy_extras.nodes_model_advanced import ModelSamplingFlux, ModelSamplingAuraFlow
        from node_helpers import conditioning_set_values
        from nodes import LoraLoader

        is_schnell = model.model.model_type == comfy.model_base.ModelType.FLOW

        noise = seed.replace("\n", ",").split(",")
        noise = [random.randint(0, 999999) if "?" in n else int(n) for n in noise]
        if not noise:
            noise = [random.randint(0, 999999)]

        if sampler == '*':
            sampler = comfy.samplers.KSampler.SAMPLERS
        elif sampler.startswith("!"):
            sampler = sampler.replace("\n", ",").split(",")
            sampler = [s.strip("! ") for s in sampler]
            sampler = [s for s in comfy.samplers.KSampler.SAMPLERS if s not in sampler]
        else:
            sampler = sampler.replace("\n", ",").split(",")
            sampler = [s.strip() for s in sampler if s.strip() in comfy.samplers.KSampler.SAMPLERS]
        if not sampler:
            sampler = ['ipndm']

        if scheduler == '*':
            scheduler = comfy.samplers.KSampler.SCHEDULERS
        elif scheduler.startswith("!"):
            scheduler = scheduler.replace("\n", ",").split(",")
            scheduler = [s.strip("! ") for s in scheduler]
            scheduler = [s for s in comfy.samplers.KSampler.SCHEDULERS if s not in scheduler]
        else:
            scheduler = scheduler.replace("\n", ",").split(",")
            scheduler = [s.strip() for s in scheduler]
            scheduler = [s for s in scheduler if s in comfy.samplers.KSampler.SCHEDULERS]
        if not scheduler:
            scheduler = ['simple']

        if steps == "":
            if is_schnell:
                steps = "4"
            else:
                steps = "20"
        steps = parse_string_to_list(steps)

        denoise = "1.0" if denoise == "" else denoise
        denoise = parse_string_to_list(denoise)

        guidance = "3.5" if guidance == "" else guidance
        guidance = parse_string_to_list(guidance)

        if not is_schnell:
            max_shift = "1.15" if max_shift == "" else max_shift
            base_shift = "0.5" if base_shift == "" else base_shift
        else:
            max_shift = "0"
            base_shift = "1.0" if base_shift == "" else base_shift

        max_shift = parse_string_to_list(max_shift)
        base_shift = parse_string_to_list(base_shift)

        cond_text = None
        if isinstance(conditioning, dict) and "encoded" in conditioning:
            cond_text = conditioning["text"]
            cond_encoded = conditioning["encoded"]
        else:
            cond_encoded = [conditioning]

        out_latent = None
        out_params = []

        basicschedueler = BasicScheduler()
        basicguider = BasicGuider()
        samplercustomadvanced = SamplerCustomAdvanced()
        latentbatch = LatentBatch()
        modelsamplingflux = ModelSamplingFlux() if not is_schnell else ModelSamplingAuraFlow()
        width = latent_image["samples"].shape[3]*8
        height = latent_image["samples"].shape[2]*8

        lora_strength_len = 1
        if loras:
            lora_model = loras["loras"]
            lora_strength = loras["strengths"]
            lora_strength_len = sum(len(i) for i in lora_strength)

            if self.loraloader is None:
                self.loraloader = LoraLoader()

        # count total number of samples
        total_samples = len(cond_encoded) * len(noise) * len(max_shift) * len(base_shift) * len(guidance) * len(sampler) * len(scheduler) * len(steps) * len(denoise) * lora_strength_len
        current_sample = 0
        if total_samples > 1:
            pbar = ProgressBar(total_samples)

        lora_strength_len = 1
        if loras:
            lora_strength_len = len(lora_strength[0])

        for los in range(lora_strength_len):
            if loras:
                patched_model = self.loraloader.load_lora(model, None, lora_model[0], lora_strength[0][los], 0)[0]
            else:
                patched_model = model

            for i in range(len(cond_encoded)):
                conditioning = cond_encoded[i]
                ct = cond_text[i] if cond_text else None
                for n in noise:
                    randnoise = Noise_RandomNoise(n)
                    for ms in max_shift:
                        for bs in base_shift:
                            if is_schnell:
                                work_model = modelsamplingflux.patch_aura(patched_model, bs)[0]
                            else:
                                work_model = modelsamplingflux.patch(patched_model, ms, bs, width, height)[0]
                            for g in guidance:
                                cond = conditioning_set_values(conditioning, {"guidance": g})
                                guider = basicguider.get_guider(work_model, cond)[0]
                                for s in sampler:
                                    samplerobj = comfy.samplers.sampler_object(s)
                                    for sc in scheduler:
                                        for st in steps:
                                            for d in denoise:
                                                sigmas = basicschedueler.get_sigmas(work_model, sc, st, d)[0]
                                                current_sample += 1
                                                log = f"Sampling {current_sample}/{total_samples} with seed {n}, sampler {s}, scheduler {sc}, steps {st}, guidance {g}, max_shift {ms}, base_shift {bs}, denoise {d}"
                                                lora_name = None
                                                lora_str = 0
                                                if loras:
                                                    lora_name = lora_model[0]
                                                    lora_str = lora_strength[0][los]
                                                    log += f", lora {lora_name}, lora_strength {lora_str}"
                                                logging.info(log)
                                                start_time = time.time()
                                                latent = samplercustomadvanced.sample(randnoise, guider, samplerobj, sigmas, latent_image)[1]
                                                elapsed_time = time.time() - start_time
                                                out_params.append({"time": elapsed_time,
                                                                "seed": n,
                                                                "width": width,
                                                                "height": height,
                                                                "sampler": s,
                                                                "scheduler": sc,
                                                                "steps": st,
                                                                "guidance": g,
                                                                "max_shift": ms,
                                                                "base_shift": bs,
                                                                "denoise": d,
                                                                "prompt": ct,
                                                                "lora": lora_name,
                                                                "lora_strength": lora_str})

                                                if out_latent is None:
                                                    out_latent = latent
                                                else:
                                                    out_latent = latentbatch.batch(out_latent, latent)[0]
                                                if total_samples > 1:
                                                    pbar.update(1)

        return (out_latent, out_params)

class PlotParameters:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "images": ("IMAGE", ),
                    "params": ("SAMPLER_PARAMS", ),
                    "order_by": (["none", "time", "seed", "steps", "denoise", "sampler", "scheduler", "guidance", "max_shift", "base_shift", "lora_strength"], ),
                    "cols_value": (["none", "time", "seed", "steps", "denoise", "sampler", "scheduler", "guidance", "max_shift", "base_shift", "lora_strength"], ),
                    "cols_num": ("INT", {"default": -1, "min": -1, "max": 1024 }),
                    "add_prompt": (["false", "true", "excerpt"], ),
                    "add_params": (["false", "true", "changes only"], {"default": "true"}),
                }}

    RETURN_TYPES = ("IMAGE", )
    FUNCTION = "execute"
    CATEGORY = "essentials/sampling"

    def execute(self, images, params, order_by, cols_value, cols_num, add_prompt, add_params):
        from PIL import Image, ImageDraw, ImageFont
        import math
        import textwrap

        if images.shape[0] != len(params):
            raise ValueError("Number of images and number of parameters do not match.")

        _params = params.copy()

        if order_by != "none":
            sorted_params = sorted(_params, key=lambda x: x[order_by])
            indices = [_params.index(item) for item in sorted_params]
            images = images[torch.tensor(indices)]
            _params = sorted_params

        if cols_value != "none" and cols_num > -1:
            groups = {}
            for p in _params:
                value = p[cols_value]
                if value not in groups:
                    groups[value] = []
                groups[value].append(p)
            cols_num = len(groups)

            sorted_params = []
            groups = list(groups.values())
            for g in zip(*groups):
                sorted_params.extend(g)

            indices = [_params.index(item) for item in sorted_params]
            images = images[torch.tensor(indices)]
            _params = sorted_params
        elif cols_num == 0:
            cols_num = int(math.sqrt(images.shape[0]))
            cols_num = max(1, min(cols_num, 1024))

        width = images.shape[2]
        out_image = []

        font = ImageFont.truetype(os.path.join(FONTS_DIR, 'ShareTechMono-Regular.ttf'), min(48, int(32*(width/1024))))
        text_padding = 3
        line_height = font.getmask('Q').getbbox()[3] + font.getmetrics()[1] + text_padding*2
        char_width = font.getbbox('M')[2]+1 # using monospace font

        if add_params == "changes only":
            value_tracker = {}
            for p in _params:
                for key, value in p.items():
                    if key != "time":
                        if key not in value_tracker:
                            value_tracker[key] = set()
                        value_tracker[key].add(value)
            changing_keys = {key for key, values in value_tracker.items() if len(values) > 1 or key == "prompt"}

            result = []
            for p in _params:
                changing_params = {key: value for key, value in p.items() if key in changing_keys}
                result.append(changing_params)

            _params = result

        for (image, param) in zip(images, _params):
            image = image.permute(2, 0, 1)

            if add_params != "false":
                if add_params == "changes only":
                    text = "\n".join([f"{key}: {value}" for key, value in param.items() if key != "prompt"])
                else:
                    text = f"time: {param['time']:.2f}s, seed: {param['seed']}, steps: {param['steps']}, size: {param['width']}×{param['height']}\ndenoise: {param['denoise']}, sampler: {param['sampler']}, sched: {param['scheduler']}\nguidance: {param['guidance']}, max/base shift: {param['max_shift']}/{param['base_shift']}"
                    if 'lora' in param and param['lora']:
                        text += f"\nLoRA: {param['lora'][:32]}, str: {param['lora_strength']}"

                lines = text.split("\n")
                text_height = line_height * len(lines)
                text_image = Image.new('RGB', (width, text_height), color=(0, 0, 0))

                for i, line in enumerate(lines):
                    draw = ImageDraw.Draw(text_image)
                    draw.text((text_padding, i * line_height + text_padding), line, font=font, fill=(255, 255, 255))

                text_image = T.ToTensor()(text_image).to(image.device)
                image = torch.cat([image, text_image], 1)

            if 'prompt' in param and param['prompt'] and add_prompt != "false":
                prompt = param['prompt']
                if add_prompt == "excerpt":
                    prompt = " ".join(param['prompt'].split()[:64])
                    prompt += "..."

                cols = math.ceil(width / char_width)
                prompt_lines = textwrap.wrap(prompt, width=cols)
                prompt_height = line_height * len(prompt_lines)
                prompt_image = Image.new('RGB', (width, prompt_height), color=(0, 0, 0))

                for i, line in enumerate(prompt_lines):
                    draw = ImageDraw.Draw(prompt_image)
                    draw.text((text_padding, i * line_height + text_padding), line, font=font, fill=(255, 255, 255))

                prompt_image = T.ToTensor()(prompt_image).to(image.device)
                image = torch.cat([image, prompt_image], 1)

            # a little cleanup
            image = torch.nan_to_num(image, nan=0.0).clamp(0.0, 1.0)
            out_image.append(image)

        # ensure all images have the same height
        if add_prompt != "false" or add_params == "changes only":
            max_height = max([image.shape[1] for image in out_image])
            out_image = [F.pad(image, (0, 0, 0, max_height - image.shape[1])) for image in out_image]

        out_image = torch.stack(out_image, 0).permute(0, 2, 3, 1)

        # merge images
        if cols_num > -1:
            cols = min(cols_num, out_image.shape[0])
            b, h, w, c = out_image.shape
            rows = math.ceil(b / cols)

            # Pad the tensor if necessary
            if b % cols != 0:
                padding = cols - (b % cols)
                out_image = F.pad(out_image, (0, 0, 0, 0, 0, 0, 0, padding))
                b = out_image.shape[0]

            # Reshape and transpose
            out_image = out_image.reshape(rows, cols, h, w, c)
            out_image = out_image.permute(0, 2, 1, 3, 4)
            out_image = out_image.reshape(rows * h, cols * w, c).unsqueeze(0)

            """
            width = out_image.shape[2]
            # add the title and notes on top
            if title and export_labels:
                title_font = ImageFont.truetype(os.path.join(FONTS_DIR, 'ShareTechMono-Regular.ttf'), 48)
                title_width = title_font.getbbox(title)[2]
                title_padding = 6
                title_line_height = title_font.getmask(title).getbbox()[3] + title_font.getmetrics()[1] + title_padding*2
                title_text_height = title_line_height
                title_text_image = Image.new('RGB', (width, title_text_height), color=(0, 0, 0, 0))

                draw = ImageDraw.Draw(title_text_image)
                draw.text((width//2 - title_width//2, title_padding), title, font=title_font, fill=(255, 255, 255))

                title_text_image = T.ToTensor()(title_text_image).unsqueeze(0).permute([0,2,3,1]).to(out_image.device)
                out_image = torch.cat([title_text_image, out_image], 1)
            """

        return (out_image, )

class GuidanceTimestepping:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "model": ("MODEL",),
                "value": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 100.0, "step": 0.05}),
                "start_at": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01}),
                "end_at": ("FLOAT", {"default": 0.8, "min": 0.0, "max": 1.0, "step": 0.01}),
            }
        }

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "execute"
    CATEGORY = "essentials/sampling"

    def execute(self, model, value, start_at, end_at):
        sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at)
        sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at)

        def apply_apg(args):
            cond = args["cond"]
            uncond = args["uncond"]
            cond_scale = args["cond_scale"]
            sigma = args["sigma"]

            sigma = sigma.detach().cpu()[0].item()

            if sigma <= sigma_start and sigma > sigma_end:
                cond_scale = value

            return uncond + (cond - uncond) * cond_scale
        
        m = model.clone()
        m.set_model_sampler_cfg_function(apply_apg)
        return (m,)

class ModelSamplingDiscreteFlowCustom(torch.nn.Module):
    def __init__(self, model_config=None):
        super().__init__()
        if model_config is not None:
            sampling_settings = model_config.sampling_settings
        else:
            sampling_settings = {}

        self.set_parameters(shift=sampling_settings.get("shift", 1.0), multiplier=sampling_settings.get("multiplier", 1000))

    def set_parameters(self, shift=1.0, timesteps=1000, multiplier=1000, cut_off=1.0, shift_multiplier=0):
        self.shift = shift
        self.multiplier = multiplier
        self.cut_off = cut_off
        self.shift_multiplier = shift_multiplier
        ts = self.sigma((torch.arange(1, timesteps + 1, 1) / timesteps) * multiplier)
        self.register_buffer('sigmas', ts)

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        return sigma * self.multiplier

    def sigma(self, timestep):
        shift = self.shift
        if timestep.dim() == 0:
            t = timestep.cpu().item() / self.multiplier
            if t <= self.cut_off:
                shift = shift * self.shift_multiplier
            
        return comfy.model_sampling.time_snr_shift(shift, timestep / self.multiplier)

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 1.0
        if percent >= 1.0:
            return 0.0
        return 1.0 - percent

class ModelSamplingSD3Advanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "shift": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 100.0, "step":0.01}),
                              "cut_off": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step":0.05}),
                              "shift_multiplier": ("FLOAT", {"default": 2, "min": 0, "max": 10, "step":0.05}),
                              }}

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "execute"

    CATEGORY = "essentials/sampling"

    def execute(self, model, shift, multiplier=1000, cut_off=1.0, shift_multiplier=0):
        m = model.clone()
        

        sampling_base = ModelSamplingDiscreteFlowCustom
        sampling_type = comfy.model_sampling.CONST

        class ModelSamplingAdvanced(sampling_base, sampling_type):
            pass

        model_sampling = ModelSamplingAdvanced(model.model.model_config)
        model_sampling.set_parameters(shift=shift, multiplier=multiplier, cut_off=cut_off, shift_multiplier=shift_multiplier)
        m.add_object_patch("model_sampling", model_sampling)

        return (m, )

SAMPLING_CLASS_MAPPINGS = {
    "KSamplerVariationsStochastic+": KSamplerVariationsStochastic,
    "KSamplerVariationsWithNoise+": KSamplerVariationsWithNoise,
    "InjectLatentNoise+": InjectLatentNoise,
    "FluxSamplerParams+": FluxSamplerParams,
    "GuidanceTimestepping+": GuidanceTimestepping,
    "PlotParameters+": PlotParameters,
    "TextEncodeForSamplerParams+": TextEncodeForSamplerParams,
    "SamplerSelectHelper+": SamplerSelectHelper,
    "SchedulerSelectHelper+": SchedulerSelectHelper,
    "LorasForFluxParams+": LorasForFluxParams,
    "ModelSamplingSD3Advanced+": ModelSamplingSD3Advanced,
}

SAMPLING_NAME_MAPPINGS = {
    "KSamplerVariationsStochastic+": "🔧 KSampler Stochastic Variations",
    "KSamplerVariationsWithNoise+": "🔧 KSampler Variations with Noise Injection",
    "InjectLatentNoise+": "🔧 Inject Latent Noise",
    "FluxSamplerParams+": "🔧 Flux Sampler Parameters",
    "GuidanceTimestepping+": "🔧 Guidance Timestep (experimental)",
    "PlotParameters+": "🔧 Plot Sampler Parameters",
    "TextEncodeForSamplerParams+": "🔧Text Encode for Sampler Params",
    "SamplerSelectHelper+": "🔧 Sampler Select Helper",
    "SchedulerSelectHelper+": "🔧 Scheduler Select Helper",
    "LorasForFluxParams+": "🔧 LoRA for Flux Parameters",
    "ModelSamplingSD3Advanced+": "🔧 Model Sampling SD3 Advanced",
}