Spaces:
Running
on
L40S
Running
on
L40S
File size: 4,176 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import torch
from ..log import log
class MTB_StackImages:
"""Stack the input images horizontally or vertically."""
@classmethod
def INPUT_TYPES(cls):
return {"required": {"vertical": ("BOOLEAN", {"default": False})}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "stack"
CATEGORY = "mtb/image utils"
def stack(self, vertical, **kwargs):
if not kwargs:
raise ValueError("At least one tensor must be provided.")
tensors = list(kwargs.values())
log.debug(
f"Stacking {len(tensors)} tensors "
f"{'vertically' if vertical else 'horizontally'}"
)
normalized_tensors = [
self.normalize_to_rgba(tensor) for tensor in tensors
]
max_batch_size = max(tensor.shape[0] for tensor in normalized_tensors)
normalized_tensors = [
self.duplicate_frames(tensor, max_batch_size)
for tensor in normalized_tensors
]
if vertical:
width = normalized_tensors[0].shape[2]
if any(tensor.shape[2] != width for tensor in normalized_tensors):
raise ValueError(
"All tensors must have the same width "
"for vertical stacking."
)
dim = 1
else:
height = normalized_tensors[0].shape[1]
if any(tensor.shape[1] != height for tensor in normalized_tensors):
raise ValueError(
"All tensors must have the same height "
"for horizontal stacking."
)
dim = 2
stacked_tensor = torch.cat(normalized_tensors, dim=dim)
return (stacked_tensor,)
def normalize_to_rgba(self, tensor):
"""Normalize tensor to have 4 channels (RGBA)."""
_, _, _, channels = tensor.shape
# already RGBA
if channels == 4:
return tensor
# RGB to RGBA
elif channels == 3:
alpha_channel = torch.ones(
tensor.shape[:-1] + (1,), device=tensor.device
) # Add an alpha channel
return torch.cat((tensor, alpha_channel), dim=-1)
else:
raise ValueError(
"Tensor has an unsupported number of channels: "
"expected 3 (RGB) or 4 (RGBA)."
)
def duplicate_frames(self, tensor, target_batch_size):
"""Duplicate frames in tensor to match the target batch size."""
current_batch_size = tensor.shape[0]
if current_batch_size < target_batch_size:
duplication_factors: int = target_batch_size // current_batch_size
duplicated_tensor = tensor.repeat(duplication_factors, 1, 1, 1)
remaining_frames = target_batch_size % current_batch_size
if remaining_frames > 0:
duplicated_tensor = torch.cat(
(duplicated_tensor, tensor[:remaining_frames]), dim=0
)
return duplicated_tensor
else:
return tensor
class MTB_PickFromBatch:
"""Pick a specific number of images from a batch.
either from the start or end.
"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"from_direction": (["end", "start"], {"default": "start"}),
"count": ("INT", {"default": 1}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "pick_from_batch"
CATEGORY = "mtb/image utils"
def pick_from_batch(self, image, from_direction, count):
batch_size = image.size(0)
# Limit count to the available number of images in the batch
count = min(count, batch_size)
if count < batch_size:
log.warning(
f"Requested {count} images, "
f"but only {batch_size} are available."
)
if from_direction == "end":
selected_tensors = image[-count:]
else:
selected_tensors = image[:count]
return (selected_tensors,)
__nodes__ = [MTB_StackImages, MTB_PickFromBatch]
|